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Abstract
The response of conical premixed flames to velocity perturbations is examined for different
flow operating conditions, different burner nozzle geometries with and without flame tube
to confine the reaction zone. The study focuses on the type of flow perturbations to
consider in order to reproduce the correct gain and phase of the flame transfer function
(FTF). In all cases explored, it is shown that only a convective model considering a
divergence free perturbed velocity field enables to reproduce the phase of the FTF. In this
model, flow perturbations are convected by the mean flow and are locally incompressible.
Theoretical predictions are compared to experimental results. A specific focus is given on
the effect of confinement on the flame response by measuring the spatial evolution of the
velocity field in the fresh gases stream. This is used to highlight the limits of the model,
and to identify further requirements one should consider to improve the modeling of the
FTF gain. The model proposed may be used to improve predictions of thermo-acoustic
instabilities by a better description of the phase of the flame response.

Introduction
Premixed systems often feature acoustically coupled instabilities which reduce their do-
main of operation and have many detrimental effects [1, 2]. The prediction of these un-
desirable regimes requires a detailed knowledge of the combustor acoustics and the flame
response to flow perturbations which is difficult to describe. Low-order thermo-acoustic
models then often relies on the knowledge of the Flame Transfer Function (FTF) linking
incoming flow perturbations to heat release rate disturbances and predictions improve
with a better description of the FTF [3, 4, 5]. In perfectly premixed systems and in ab-
sence of mixture composition disturbances, the flame responds to velocity perturbations
[6]. In the limit of small perturbations [7], it is defined in terms of a gain G and a phase
ϕ, both function of the angular frequency ω :

F (ω) =
˜̇Q1/Q̇0

v1/v0
= G(ω)eiϕ(ω) (1)

where fluctuations are analyzed in the frequency space by expanding the flow variables as

a = a0 + ã1 exp(−iωt), ˜̇Q1 and v1 indicating fluctuations in heat release rate and velocity
at the burner outlet respectively.

The case of conical flames constitutes one interesting generic configuration where it is
possible to obtain an analytical expression for this FTF [8, 9, 10, 11]. This can be used
to identify the main parameters controlling the flame response [6, 12, 13, 14, 15, 16], or
validate simulations tools [17, 18]. Many different models have been proposed including
effects of the flow velocity, stretch and curvature effects [19], anchoring point dynamics
[20] but a few were validated yet against detailed measurements of the FTF [9, 10, 13].
This work aims at identifying the main flow parameters controlling the response of conical



flames submitted to velocity modulations when the burner geometry is modified, the flow
operating conditions are changed and the flame is confined. It is shown that the main
features of the flame response can be reproduced by including a better description of the
perturbed velocity field, a problem which has not been envisaged yet in previous modeling
and strongly modify the flame response.

The analysis relies on the level set description of the flame front displacement:

∂G

∂t
+ v · ∇G = SL|∇G| (2)

where v indicates the flow velocity at the flame front location and SL denotes the laminar
burning speed with respect to the fresh mixture. In the case of a uniform mean axial flow
v = v0ey, this equation reduces in a reference frame attached to the steady flame inclined
with an angle α with respect to the axial direction ey [10] to:

∂ξ

∂t
+ U

∂ξ

∂X
= V ′(X, t) (3)

where U = v0 cosα denotes the mean flow velocity component tangential to the flame
front, V ′(X, t) corresponds to the velocity perturbation normal to the steady flame front,
evaluated at the steady flame front position, and ξ is the flame front displacement normal
to its steady position.

One of the difficulty is to accurately model the velocity perturbation V ′(X, t) imping-
ing the flame front. In most studies a uniform flow perturbation from the burner outlet is
considered by invoking that the acoustic disturbance wavelengths are large compared to
the flame size [8, 9, 12, 20]. In this case V ′(X, t) = Ṽ1 exp(−iωt) is only a function of time
and is given by Ṽ1 = v1 sinα. In the comparisons with experimental data conducted in
[9], this type of perturbation was considered and this model was shown to well reproduce
the gain, as well as the phase in the very low frequency range. The phase predictions
however rapidly deviate from measurements at higher frequencies where the phase of the
model saturates around π/2 while experimental data still feature a regular increase in
this frequency range. Later, stretch and curvature effects were shown to only barely mod-
ify the flame response and cannot explain such behavior [19]. It was demonstrated by
[12] that flame front wrinkles are convected along the flame front in a perturbed flow
confirming earlier observations [21]. This was used by Baillot et al. [13, 22] to analyze
cusp formation along the flame front and identify a convected wave in the velocity field
of pulsated conical flames. This type of convective perturbation has been considered in
[10] to model the flame transfer function. In this case the velocity perturbation writes
Ṽ1 = v1 sinα exp(iky), where k = ω/v0 is a convective wavenumber along the burner axis
y. This model barely modifies the gain of the FTF. It succeeded in predicting correctly
the slope of the phase of the FTF at high frequencies, but was mismatching at very low
frequencies. One of the weakness of this model is to violate continuity. A convective
model satisfying mass balance has been proposed in [13] and used to retrieved the flame
front deformations at specific frequencies, but the FTF was not determined in this study.
It was shown by numerical integration of the G- equation [17] that this type of perturbed
flow field enables to retrieve the low and high frequency behavior of the FTF. There has
been yet no attempt to develop an analytical description for the FTF including this type
of perturbation.

Predictions of unstable operating modes remain difficult with previous analytical de-
scriptions since the phase of the FTF, mainly determining the stability of the system [23],
is not well reproduced. Collections of small conical flames are often used in practice and
feature a complex response which is generally determined experimentally [5, 7, 24]. There
are also a few attempts where the response is modeled using the FTF of a unique conical
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Figure 1. : Schematic representation of an inclined flame sheet with an angle α charac-
terized by a displacement speed SL in a uniform mean axial flow v0 submitted to velocity
perturbations. The flame front normal displacement ξ is due to the normal velocity per-
turbation V ′(X, t) in the flame reference frame (X,Y).

flame [20, 25]. Some numerical investigations show however that the effect of the flame
confinement is essential to model these systems [26]. Before envisaging more sophisticated
configurations, it is important to obtain an accurate description of the response to flow
perturbations of a single flame, with or without confinement.

In the present work, a convective perturbation in the fresh gases satisfying the continu-
ity equation is used to determine the FTF of conical flames submitted to harmonic velocity
modulations. An analytical expression is obtained in section 2. This flame response is
compared to previous models [9, 10] and a low frequency approximation is derived to show
that it reduces to previous uniform model predictions at low frequencies. An experimen-
tal validation is then conducted with the setup described in section 3. Measurements of
the FTF are presented for different burner geometries and flow conditions. These data
includes a focus on effects of confinement on the flame response that are completed by a
characterization of the spatial evolution of the velocity field along the burner centerline.
A discussion is developed in section 4 to examine the limits of the proposed model and
to identify further developments that need to be considered.

1 Theoretical developement
Incompressible convective velocity model
The case of premixed flame stabilized on an axisymmetric burner with a nozzle diameter
R is considered when the flow is uniform at the burner outlet. The flame that takes a
conical shape is submitted to acoustic modulations. The flame front wrinkles due to the
velocity perturbation in the fresh gases stream, acting as a forcing term in the G-equation,
and the convection of these deformations along the steady flame front takes place at a
velocity equal to v0 cosα. The perturbed flow in the vicinity of the flame can locally be
treated as incompressible as long as the acoustic disturbance wavelength remains large
compared to the flame height [14]. The perturbed flow field considered comprises then a
convected wave but should remain divergence free. In the burner frame (x, y), it takes
the following form :

ũ1 = ik
(R− x)

2
v1 exp(iky) (4)

ṽ1 = v1 exp(iky) (5)
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where v1 denotes the amplitude of the axial velocity perturbation at the burner outlet
y = 0. The radial perturbation u′1 vanishes on the burner centerline and both axial v′1 and
radial u′1 disturbances are convected by the uniform axial mean flow (u0 = 0, v0 = cte) with
a wavenumber k = ω/v0 based on the mean flow velocity u0 along the axial direction ey.
The corresponding velocity perturbation normal to the steady flame front and evaluated
at the steady flame front location writes in this case:

Ṽ (X, Y = 0) = v1 sinα

[
1− i1

2
k∗

(
1− X sinα

R

)]
exp

(
ik∗

X sinα

R

)
(6)

where k∗ = ω∗ cos2 α is a dimensionless flow wavenumber based on flow perturbations
propagating at a velocity v0 along the axial direction over a distance equal to the flame
height H, and ω∗ = ωR/(SL cosα) is a dimensionless flame wavenumber related to flame
front deformations propagating at a speed v0 cosα along the flame front over a distance
corresponding to the flame front length L :

k∗ = ω∗ cos2 α =
ω

v0
H (7)

ω∗ =
ωR

SL cosα
=

ω

v0 cosα
L (8)

Integration of Eq. (3) with the flow perturbation Eq. (6) leads to the following expression
for the the flame front displacement:

ξ̃(u) cosα

R
=
v1
v0

1

i(k∗ − ω∗)
·
[(

1− i1
2
k∗ −

1

2

k∗
k∗ − ω∗

)
(exp(ik∗u)− exp(iω∗u))

−i1
2
k∗u exp(ik∗u)

] (9)

where u = X/L is the dimensionless space variable along the steady flame front featuring a
length L. This equation is then integrated over the flame length L to obtain an expression
for the relative perturbations in flame surface area A′ = Ã1 exp(−iωt) corresponding also
to heat release rate disturbances in absence of mixture composition inhomogeneities:

˜̇Q1

Q̇0

=
Ã1

A0

=
v1
v0
FA (10)

where the Flame Transfer Function FA is given by :

FA =
1

i(k∗ − ω∗)
·
[
2

(
1− i1

2
k∗ −

1

2

k∗
k∗ − ω∗

)(
exp(ik∗)− 1

ik∗
− exp(iω∗)− 1

iω∗

)
+

(
exp(ik∗)−

exp(ik∗)− 1

ik∗

)] (11)

An example for the gain and phase of FA for a conical flame with an angle α = 0.3 rad
(i.e. with v0 = 1.32 m.s−1 and SL = 0.4 m.s−1) is plotted in Fig. 1 as a function of the
reduced frequency ω∗. Results are compared to predictions with a uniform model FU

(dashed-dotted lines) [9] and with a convective wave FC (dashed lines) [10], given by:

FU =
2

ω2
∗

[1− exp(iω∗) + iω∗] (12)
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Figure 2. : Gain (left) and phase (right) of the FTF for a flame angle α = 0.3 rad
as a function of the reduced frequency ω∗. Solid line : FA (convective wave satisfying
continuity). Dashed-dotted line : FU (uniform flow perturbation [9]). Dashed lines : FC

(convective wave [10]).

FC =
2

i(k∗ − ω∗)

[
exp(ik∗)− 1

ik∗
− exp(iω∗)− 1

iω∗

]
(13)

The gain is larger than the previous models but it features also higher amplitude
oscillations. The phase now collapses with estimates obtained with bulk flow modulations
at low frequencies (dashed-dotted lines) and features the correct asymptotic behavior
at higher frequencies already identified with the convective model (dashed lines). It is
interesting to further analyze the low frequency behavior.

Low frequency phase behavior
One difficulty with the convective model developed in [10] is the poor agreement with
experimental data at low frequencies. As mentioned previously, the theoretical expression
FU derived in [9] reproduces well experimental data in the low frequency limit, while the
model FC developed in [10] was shown to over-predict the phase in this frequency range.
The new model developed herein is expected to improve results in the low-frequency range
by locally satisfying mass balance [17]. These different models are compared under the
assumption ω∗ � 1. A development in Taylor series around the value ω∗ = 0+ yields:

FU ∼
0+

1 +
iω∗
3

FC ∼
0+

1 +
iω∗
3

(1 + cos2 α) FA ∼
0+

1 +
iω∗
3

(14)

The first two expressions obtained in [9, 10] show the incompatibility of the uniform and
convective models at low frequencies. This leads to an over-prediction with the convective
model, while the new model now reaches the correct low frequency limit and also conserve
a convective pattern which is observed experimentally in the upper frequency range for
small perturbation levels [7, 16].

2 Experimental validation
Experimental setup
The configuration studied here is presented in Fig. 3. This burner is used to stabilized
perfectly premixed methane-air flames at different equivalence ratios. The burner is fed
from the bottom into a cylindrical feeding manifold. It is also equipped with a honeycomb,
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Figure 3. : Experimental setup with the diagnostic equipment (left figure) and the
detailed burner exits (right figure).

a laminarization grid and a convergent nozzle to obtain a laminar top-hat velocity profile
at the circular nozzle exit. A loudspeaker is mounted at the bottom of the burner to
generate acoustic perturbations which modulates the flow at the burner exit.

The burner can be equipped with three different nozzle outlets. The two first cor-
respond to cylindrical pieces with a 1 mm-wide beveled edge. Burner A has a radius
R = 11 mm and burner B features a larger radius R = 15 mm. The last nozzle is a cylin-
drical piece that comprises an external plateau. Burner C has an internal outlet radius
R = 11 mm and thickness l = 6.5 mm at the outlet section. This nozzle can also be
equipped with a quartz confinement tube of radius r = 17.5 mm and length l = 100 mm
to explore effects of lateral confinement on the flame response. It is further referenced
as burner D. Two flow mass meters were used to control both the equivalence ratio and
the bulk velocity at the burner outlet. Flames at three different equivalence ratios were
investigated: φ = 0.8, 1.0 and 1.1 corresponding to laminar burning velocities SL = 0.29,
0.39 and 0.39 m.s−1. Experiments were all conducted for a small input level to remain
in the linear regime by keeping the relative velocity perturbation level constant at the
burner outlet vrms

1 /v0 = 0.05 except in Fig. 6 where the fluctuation level was increased to
vrms
1 /v0 = 0.10.

The loudspeaker was driven by a harmonic signal through a function generator and
an amplifier, so that the acoustic velocity perturbation level and frequency can be easily
swept. The heat release rate was measured with a photodiode (PM) equipped with a
OH* filter by collecting the chemiluminescence emission from the flame. The velocity was
measured by Laser Doppler Velocimetry (LDV) with a data acquisition rate of 16,384
Hz. The burner was mounted on a micrometric sliding rail enabling measurements of the
velocity field along the burner axis, from 1.24 mm above the burner exit to the tip of the
flame. The signals were recorded with a National Instrument analog-to-digital converter
board controlled by the LabVIEW software, at a sampling frequency of 32,768 Hz. This
software was also used to post-process the time series recorded by the different sensors and
to compute the FTF presented hereafter using a Welch periodogram method to improve
the signal to noise ratio.

Results on the beveled edge burner
Results presented in Fig. 4 are gain and phase of conical flames anchored on burners A
and B featuring beveled edges for different flow parameters and different outlet radius.
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Figure 4. : Gain and phase of the FTF for burners A (left) and B (right) featuring
beveled edges and different outlet radius. φ = 1.1 and R = 11 mm (left figure), and
v0 = 1.30 m.s−1 and R = 15 mm (right figure). Experimental data are also compared to
predictions with FA, and also with FU (uniform velocity perturbations) and FC (convective
velocity perturbations) in the left figure.

In these experiments, the height of the steady flame has been modified, either through a
change in the bulk velocity or burning velocity.

In the left figure, the bulk velocity is the varying parameter, while the equivalence
ratio φ = 1.1 and the burner radius R = 11 mm were kept constant. In the right figure,
the equivalence ratio was changed corresponding to different flame speeds while the bulk
velocity v0 = 1.30 m.s−1 and the burner radius R = 15 mm were kept constant. Results
are plotted as function of the reduced frequency ω∗ = ωR/(SL cosα). The experimental
curves exhibit a good match at low frequencies indicating that ω∗ is the right dimensionless
number to characterize the FTF in the low frequency range. A slight drift between the
curves is observed in the upper frequency range though. The new model presented in this
article exhibits an excellent match for the phase behavior except at very high frequencies
where the phase saturates. The gain is slightly over-predicted but its evolution and the
location of secondary extrema are correctly retrieved by the model. Predictions obtained
with the previous models FU and FC are also plotted on this figure. The improvement on
the phase prediction in the low frequency range is obvious. As for the gain, the previous
models led to good approximations of its magnitude, but the new model definitely shows
the right trends and oscillations, even if they are over-predicted.

In the right figure, the equivalence ratio was changed from φ = 0.8 to φ = 1.1 cor-
responding to different burning velocities, SL = 0.29 m.s−1 and SL = 0.39 m.s−1 respec-
tively. Results obtained for the rich mixture cases show the same type of behavior as
in the left figure. The phase seems to saturate earlier, but a better frequency resolution
would be needed to give a definite evidence. Again, the modeled phase matches well
with experiments at φ = 1.1 in the low frequency range and miss the phase saturation
around 4π. The gain is over-predicted but exhibits the good trends. Experimental data
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Figure 5. : Gain and phase of the FTF for burners C (without flame tube - left figure)
and D (with flame tube - right figure) featuring a thick plateau and a nozzle outlet radius
R = 11 mm. Experimental data presented for different flow velocities (symbols) are
compared to predictions with FA (solid line).

obtained for φ = 0.8 indicate a different trend with a slight drift between predictions and
measurements for the phase with respect to ω∗ that only collapse at very low frequencies.
The general regular increase of the phase is however retrieved and a gain exceeding unity
at very low frequencies is also observed as in the predictions. This characteristic is absent
in the rich case explored.

We can then conclude that the burning velocity has a much bigger influence on the
flame response than the bulk flow velocity in the cases considered here. This is probably
the result of the little dependance of ω∗ on v0 for elongated flames, for which cosα ' 1.
The burning velocity SL also appears in the expression of ω∗. A slight error in this
quantity has a larger impact on the results. It has been shown that by matching the
steady flame height with experiments, the FTF collapse to experimental results [17]. The
correct quantity appearing in ω∗ is indeed the flame displacement speed Sd that can
related to the experimentally determined flame height such as :

Sd = v0 sinαexp where αexp = arctan(
R

Hexp

) (15)

Effects of burner edges and confinement
The response of conical flames stabilized on a burner featuring a thick plateau at the
outlet is examined when the flame is confined by a quartz tube or free to expand. Results
are shown in Fig. 5 without flame tube (left figure) and with flame tube (right figure). In
the absence of flame tube, experimental data obtained for burner C at two different flow
velocities v0 = 1.32 and 2.50 m.s−1 and a mixture equivalence ratio φ = 1.1 again collapse
when plotted as function of the reduced frequency ω∗. The gain shows little dependance
on the bulk velocity, except at high frequencies where a mismatch in the minima locations
is observed between the two sets of data. This feature was also observed previously for
the beveled edge burner equipped with thin edges. The phase also collapses up to reduce
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Figure 6. : Left figure : Comparison between the FTF with and without flame tube for
v0 = 1.89 m.s−1, φ = 1.0 and vrms

1 /v0 = 0.10. Right figure : axial velocity components
along the burner axis : mean velocity v0(z) (black) and fluctuating velocity vrms

1 (z) (grey)
in steady (upper figure) and perturbed conditions at 100 Hz (lower figure). With flame
tube (dashed lines). Without flame tube (solid line).

frequencies ω∗ = 4π and then a difference in the saturation is observed. The model
catches well the phase evolution except the saturation of the phase at high frequencies
and the gain is again slightly over-predicted. This shows that the flame response is not
sensitive to the type of rim used to anchor the flame. When the flame is confined with
burner D, the flame responses again collapse as a function of ω∗ for the two flow velocities
investigated v0 = 1.32 and 2.27 m.s−1 at the same mixture composition φ = 1.1. The
only difference observed is an increased gain compared to the unconfined cases presented
in the left figure. Model predictions now greatly improves the phase as well as the gain
of the FTF over a large frequency range except at very high frequencies where the gain
is overestimated.

Differences observed between the confined and the unconfined flame responses are
further investigated by examining the evolution of the axial velocity along the burner axis.
Results are presented in Fig. 6 for slightly different operating conditions v0 = 1.89 m.s−1,
φ = 1.1 and v′/v0 = 0.10. For this input level, the gain of the FTF decreases slightly
compared to data obtained at a lower modulation level. Increasing the input level is known
to reduce the gain. The phase is also seen to saturate at lower frequencies as well [7, 16].
Velocity measurements were first done in absence of modulation (upper figure) and when
the flow is modulated at 100 Hz (lower figure). The evolution of the mean v0(z) (black
curves) and r.m.s. fluctuating vrms

1 (z) (grey curves) velocity components are presented
for the confined flame (dashed lines) and the unconfined flame (solid line). In absence
of flow perturbation, the mean axial velocity remains uniform and r.m.s fluctuation are
vanishing. The r.m.s value is slightly increasing for large z because of the flickering of the
flame tip. The main differences observed with confinement is the regular increase of the
mean axial velocity along the burner axis, and the suppression of the r.m.s fluctuations
due to flickering. When the flame is modulated at 100 Hz, the mean axial velocity
components are not affected by the perturbation and remain close to the steady profiles.
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Figure 7. : Comparison of the influence of the burner exit geometry on the CFTF,
for three different geometries : A - Beveled-edge burner; C - Unconfined plateau-shaped
burner exit; D - Confined plateau-shaped burner exit, for two different bulk velocities :
v0 = 1.32 m.s−1 and v0 = 2.27/2.50 m.s−1.

The mean axial velocity field remains uniform in absence of flame tube while it increases
regularly with the flame tube. This contrasts with the perturbed velocity field which
is less affected by flame confinement. The r.m.s velocity evolution indicates that the
amplitude of velocity perturbations rapidly decreases with the distance y from the burner
exit and then reaches a constant value at half the r.m.s value of the amplitude imposed
at the burner exit [14]. These distinct phenomena, corresponding to an increase of the
mean velocity induced by the confinement, and a drop of the r.m.s velocity fluctuation
along the burner axis are not included in the models. They compete and may be used to
explain the different evolutions observed in the gain.

3 Discussion
When the mean flow velocity is increased due to the confinement, this leads to longer
flames with increased flame surface area fluctuations and higher values of the FTF gain.
This is confirmed by the evolution of the flame height that can be identified in the steady
and perturbed velocity profiles in absence of flame tube around z = 45 mm when the
velocity increases suddenly due to the flickering in Fig. 6. This sudden velocity increase
cannot be detected in data with the flame tube meaning that the flame height is signif-
icantly higher. This simple argument shows that confined conical flames feature larger
gains than unconfined flames for the same flow operating conditions and this is confirmed
by experimental observations. The gain may also be affected by the decrease of the r.m.s
perturbation level with the axial distance to the burner. This corresponds to lower flame
surface area fluctuations compared to a uniform excitation along the flame front and
a drop in the gain of the FTF. It is also known that this velocity drop increases with
frequency [14] leading to even smaller flame surface area fluctuations as the frequency is
increased. This behavior may explain the different results obtained for the FTF in absence
of flame tube where predictions slightly overestimate the gain because the perturbed flow
is considered constant in the model developed in this study. This was also confirmed by
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simulations [17]. In presence of flame tube, both effects compete to determine the value
of the gain but the flow acceleration due to confinement rapidly dominates.

A synthesis of the main results is presented in Fig. 7. The FTF for two different bulk
velocities and three burner configurations are plotted against ω∗. Results in absence of
flame tube are very close, except at high frequencies where the saturation level differs for
the phase. The response features the same phase behavior but a significantly larger gain
when it is confined in a flame tube. Minima in the gain are also located at slightly larger
reduced frequencies ω∗. This is due to the larger flame height when it is confined. In this
case the height is not given by H = R cotan(arcsin(SL/v0)) and the reduced frequency
must be modified.

The exploration of the velocity field in the fresh gases also revealed new dynamics that
need to be included for further improvement. With flame tube, despite the good match
between experimental and theoretical results, the investigation showed that the mean
axial velocity increases with the distance to the burner. This may be included in future
models for confined flames. Moreover, the amplitude of the axial velocity perturbation was
shown to decrease along the burner axis with and without flame tube. This is certainly
the key to fill the gap between experimental data and theoretical estimates of the gain
which is systematically over-predicted in absence of flame tube. Finally, the saturation
of the phase at high frequencies is still an open question. Several conjectures have been
already proposed but no clear proof has been given yet on this topic.

4 Conclusion
The flame transfer function of conical pulsated flame has been studied both theoretically
and experimentally. A new model for velocity perturbations which are convected by the
mean flow has been introduced to satisfy the continuity equation in the fresh gases flow.
An analytical expression for the FTF has been obtained with a phase that matches pre-
vious models at low and high frequencies. Comparisons with experimental data obtained
for different nozzle geometries and flow operating conditions show a very good match of
the phase which is an essential feature to reproduce in order to predict unstable regimes.
It was also shown that this model over-predicts the gain in absence of flame tube but
differences reduce when a flame tube is added. These comparisons have been conducted
over a wide range of parameters, such as the bulk velocity, the equivalence ratio and the
burner geometry.
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