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Abstract 
The unsteady response of a laminar diffusion flame to harmonic mass fraction oscillations and 
also flow velocity fluctuations has been investigated. Flame-sheet assumption is utilized to 
model the laminar unsteady two-dimensional co-flow diffusion flame mathematically. The 
initial combustion of most combustion chambers is through diffusion mechanism. Therefore, 
developing analytical model of diffusion combustion is of great importance. The flow is 
assumed subsonic (incompressible), inviscid, and uniform. The convection-diffusion equation 
for conserved scalar variable with appropriate boundary conditions is solved. Considering 
stoichiometric mass fraction surface to be the flame surface, it is possible to obtain the flame 
zone. In addition, different types of flame structures and transition from overventilated flame 
to underventilated flame are studied. Assuming that unburnt species have not passed across 
the flame surface and that the diffusion coefficient is constant, heat release rate can be 
considered proportionate to flame area. This method, for the first time in this work, is applied 
to diffusion flames to calculate heat release rate. Heat release rate oscillations, in the form of 
flame response function to fuel mass fraction fluctuations, flow velocity perturbations, and the 
simultaneous fluctuations of mass fraction and flow velocity, for the first and the second 
modes are acquired. At each Peclet number, frequency domain is divided into three regions, 
diffusion-dominant region, convection-diffusion region, and convection-dominant region. The 
obtained results indicate that the magnitude of response function decreases as excitation 
frequency increases, while phase difference approaches a constant value.         

Keywords: Diffusion flame, Mass fraction oscillations, Heat release rate, Flame structure, Response 
function 

 
Introduction
Almost all the devices producing power utilize combustion process which takes place in 
burners. Because of safety issues in storing and transporting combustible mixture, diffusion 
flame is more applicable even though it produces much more pollutant per unit of heat release 
rather than premixed flame. Thus, many works have been conducted to investigate the physics 
of diffusion flame. 

The earliest analytical solution to the laminar jet flame problem was conducted by Burke 
and Schumann [1]. In this work co-flow fuel and oxidizer streams enter a cylindrical duct. 
This problem is solved for both axisymmetric and two-dimensional configurations, the flame-
sheet approximation is used and the stoichiometric surface is considered as the flame surface.  

In as much as excellent accordance of Burke-Schumann model with experimental 
observations, many works carried out in order to extend this model [2-6]. Furthermore, many 
experimental works have been done to study co-flow diffusion flames [7-9].  

Fay [2] solved the laminar jet flame problem with variable-density assuming unit Schmidt 
and Lewis numbers and absolute viscosity, directly proportional to temperature. Combustion 
process can be affected adversely by instabilities. These instabilities come from interactions 



between oscillatory flow and heat release process which lead to enhanced vibrations, reduced 
part life, flame blow-off or flash-back, and even complete failure of system. As a result, a 
large number of surveys have been carried out to find out more about combustion instabilities 
and its origin, especially in premixed flames which responds more intensely to perturbations 
comparing to diffusion flames [12].  

Tyagi et al. [11] numerically studied an unsteady non-premixed flame in a uniform flow 
field, based on the Burke–Schumann geometry with examination of both finite and infinite 
chemical reaction rate. Timothy et. al. [12] experimentally investigated the response of diluted 
2-D methane-air and ethylene-air diffusion flames to acoustic pressure fluctuations in a wide 
range of frequencies and for low and medium pressure regimes.   

Using analytical and numerical techniques, Tyagi et al. [13] have recently studied the 
unsteady response of a nonpremixed flame in the same framework as Burke–Schumann 
problem. The heat release response of a two-dimensional (2-D) co-flow diffusion flame was 
studied. The results show that the flame response strongly depends on excitation frequency so 
that the flame responds only to low frequency perturbations, almost below 10 Hz. This 
frequency is far lower in comparison to the frequencies at which premixed flames respond, 
however, both flames behave in a similar manner. 

The present work is an extension to Tyagi et. al. [13] studies and presents an analytical 
solution for the cases of flow velocity perturbations and the combination of velocity and 
mixture fraction fluctuations; whereas in the previous work [13] the whole solution was 
obtained numerically. In addition to exact solutions, the method of acquiring heat release rate 
is the main difference between present work and previous works. This model has not been 
applied to diffusion flames before. Although the method applied to this problem to compute 
heat release rate is completely distinct from Tyagi [13], the results have a remarkable 
correspondence and the trend of response function obtained for heat release rate as a response 
to mass fraction and velocity perturbations is similar. 

 
Formulation 
In this work, the 2-D unsteady diffusion flame has been modeled. The geometry is 
schematically displayed in Fig. 1. In this configuration, fuel is supplied through the inner slot 
and oxidizer through the outer slot. The flow is laminar, subsonic (incompressible), the effects 
of viscosity are neglected, and boundaries are rigid. The velocity field is axial and spatially 
uniform and also diffusion coefficient is constant. In addition, flame is a symmetric surface 
attached to the rim of the fuel slot. The mixing field can be expressed by the convection-
diffusion equation for Schwab–Zel’dovich variable, in two-dimensional Cartesian coordinate 
system as follow: 
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where Schwab–Zel’dovich variable is defined as Z = αF − αA. In addition 

FFFF WY '   and 

AAAA WY '  are normalized mass fractions of fuel and oxidizer respectively. “^” indicates 
dimensional parameters. Using L and U respectively as characteristic length and velocity, 
the non-dimensionalized equation is:  
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where Pe = UL/D is the dimensionless Peclet number. Boundary conditions applied to this 
equation are as follows: 
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Figure 1. Schematic of the combustion zone 

 

Eq. (3.a) is expressive of inlet mass fraction in which
iAα and

iFα are inlet mass fractions of 

oxidizer and fuel respectively. Eq. (3.b) satisfies impenetrability of the upper and lower 
boundaries and Eq. (3.c) is resulted from the symmetry of the flame. And Eq. (3.d) is because 
of the absence of perturbations at infinity. By identifying the velocity field and appropriate 
boundary conditions, Eq. (2) has an exact solution. Velocity field and mass fraction are 
regarded as the summation of a steady and a time-dependent term uuu  and   . 

Since Eq. (2) is linear, Schwab–Zel’dovich variable, Z(x,y,t) , can also be taken down as 

summation of a steady and a time-dependent term ZZZ  . Consequently, by neglecting 
higher order non-linear terms, two equations for steady and unsteady states are resulted: 
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Inlet fuel and oxidizer mass fraction fluctuations and also velocity perturbations are 
considered harmonic with excitation angular frequency ω and specified amplitude 
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1u , and harmonic Z  fluctuations with excitation frequency, tieZZ ~ , following equation 
is obtained: 
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By exerting boundary conditions, subsequent results are acquired: 
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Since, in order to solve Eq. (6) complex notation has been put to work; only the real part 

of Z must be taken into account. Considering mixed-is-burnt and flame sheet in Burke-
Schumann model, it is possible to consider stoichiometric surface which is the very locus of  

0Z , the flame surface. Therefore, the identification of the simultaneous flame shape at any 
frequency is possible. In the vicinity of the flame surface, where the temperature is extremely 
high, chemical kinetics takes place rapidly [14]. Taking the advantage of fast chemical 
kinetics assumption, the very flame surface is where the heat release occurs. By assuming that 
the unburnt species do not pass across the flame surface, the heat release rate can be expressed 
as ,frD dAhVdq   where DV is diffusion velocity, rh is heat of reaction per unit mass of 

mixture, and fA is the area of flame surface. Making use of constant diffusion velocity and 

flow density, and also specifying the fuel type (Specified rh ) heat release rate will be 

proportional to the area of flame surface fAdq  . By finding the instantaneous area of flame 

surface at each frequency, heat release rate is obtainable. Since the relationship between heat 
release rate oscillations and entrance perturbations is nonlinear, higher modes appear here and 
a response function for each harmonic has to be defined. Entrance perturbations are in the 
form of t~ iωeC , where C

~
 is perturbation amplitude and  is excitation angular frequency. If it 

is assumed that the flame responds at the same excitation frequency [15], due to the presence 
of higher harmonic modes, instantaneous heat release rate can be written as a Fourier series 
expansion in time 


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neqqq   in which nq~ and nφ are magnitude and phase difference 

of response function for nth harmonic respectively.  
Before presenting the results, it is necessary to express Peclet number as the ratio of 

diffusion time scale ( DLD /ˆ 2 ) to convection time scale ( ULC /ˆ  ). By defining convection 

frequency as CCf ̂/1ˆ   and also diffusion frequency as DDf ̂/1ˆ  , it is possible to say that 

Peclet number is the ratio of these two frequencies DCCD ffPe ˆˆˆˆ   . 

Using L and U, diffusion and convection frequencies can be non-dimensionalized as 
1Cf and Pef D /1 . According to above-mentioned definitions, flame oscillations with 

respect to non-dimensionalized excitation frequency can be classified into three categories:   
1. Cff  , convection-dominant region, in which oscillation time scale is lower than 

convection time scale. 

2. CD fff  , convection-diffusion region, in which oscillation time scale is between 
diffusion time scale and convection time scale. 

3. Dff  , diffusion region, in which oscillation time scale is higher than diffusion time 
scale. 

 
Response to mass fraction fluctuations 
The present section studies the diffusion flame response to fuel mass fraction fluctuations. 
Fuel slot width has been selected in a way which brings about the formation of a steady 
overventilated flame [14] and therefore δ = 0.1. Steady values of fuel and oxidizer mass 



fractions at the inlet, similar to Tyagi et al. [13], are chosen as 2.3α
iF  and 7/2.3α

iA  , 

respectively. Based on experimental methods to measure air (oxidizer) flow rate, for example 
using sonic nozzle, oxidizer mass fraction is practically constant and so 0α/α~

ii AA  . The ratio 

of fuel mass fraction to its steady value is 
ii FFr α/α~ 0.1, 0.2, 0.3, and 0.5.  

 

 
Figure 2. High (I) and low (II) concentration regions in the flame 

 
Along with harmonic oscillations of fuel mass fraction, a high concentration region, in 

which fuel mass fraction is high, and a low concentration region, in which fuel mass fraction 
is low, are formed which result in flame wrinkles. These two regions propagate as a wave 
with the flow velocity. Fig. 2 schematically depicts these high (I) and low (II) concentration 
regions. Because of the transverse diffusion and propagation of the wave, in high 
concentration regions, fuel transverse movement causes augmentation in the amplitude of the 
flame wrinkles. After moving forward and decreasing in fuel concentration, oxidizer begins to 
diffuse into fuel and this highly concentrated region slowly burns away. On the other hand, in 
low concentration regions into which the surrounding oxidizer diffuses, the amplitude of the 
wrinkles is steadily decreasing. Disappearance of the low concentration region between two 
high concentration regions leads to flame clip-off. During this phenomenon, the high 
concentration region like a fuel mass advances in the flow field up to the point where the 
entire fuel is burnt. Fig. 3 shows the stoichiometric flame surface together with the flame clip-
off during a cycle for f = 0.5, αr = 0.5, and Pe = 10. As the amplitude of the perturbations and 
subsequently flame wrinkles increases, the flame clip-off formation is more probable. Not 
only perturbations, but also diffusion time scale brings about flame clip-off. Diffusion time 
scale has inverse relationship with excitation frequency. The lower the excitation frequency, 
the more time the oxidizer will have to diffuse into low concentration region travelling with 
the flow velocity. Therefore, at any constant Peclet number, flame clips off only below a 
certain excitation frequency. This frequency must be lower than characteristic flow frequency. 

In Fig. 4, with the decrease of the frequency to f = 0.1, the flame is underventilated over 
some short time spans of the cycle. In this situation, fuel, to diffuse into oxidizer, has 
adequate amount of time to touch the walls. With the disappearance of low concentration 
region, clip-off occurs in part of the flame and the remaining flame will be underventilated for 
a short period. The underventilated part clips off again and a small part of the flame, which is 
left overventilated, grows again and eventually returns to the beginning of the cycle. 

The study of unsteady flames is applicable to the combustion instabilities and for this 
reason the identification of the flame response to unsteady excitation is of paramount 
importance. Flame response is defined as the ratio of the magnitude of heat release rate (

n
q~ ) 

oscillations to mass fraction changes. In this section, flame response is analytically 
investigated as a response function of heat release rate to fuel mass fraction fluctuations at the 
fuel-slot inlet. For this reason, the response of heat release rate is achieved for various ratios 
of amplitude of inlet fuel mass fraction fluctuations to its steady value, αr = 0.1, 0.2 and 0.3. 



  

  
Figure 3. Flame shape at different time in a cycle at f = 0.5, αr = 0.5, and Pe = 10 

 

  

  
Figure 4. Flame shape at different time in a cycle at f = 0.1, αr = 0.5, and Pe = 10 

 
Fig. 5.a and Fig. 5.b respectively show the magnitude and the phase of the first harmonic 

of response function with respect to excitation frequency. It can be observed that the 
magnitude of the first mode, by going closer to the convection frequency (fC = 1), independent 
from amplitude of perturbations, is constantly decreasing to the point where f > 1, it almost 
approaches zero. This magnitude decrease behavior, with the increase of excitation frequency, 
is in accordance with the results of diffusion flames [13] as well as premixed flames [10]. 
When f < fD, because of the domination of diffusion on convection, the flame responds 
significantly to fuel mass fraction fluctuations. As perturbation amplitude (αr) increases, the 
magnitude of first mode increases at low frequencies. Fig. 5.b shows that the first harmonic 
phase is constantly negative which is an indication of the time lag of heat release rate 
oscillations behind the fuel mass fraction fluctuations. For frequencies lower than diffusion 
frequency, f < 0.1, phase difference, independent from the amplitude of fuel mass fraction 
fluctuations, increases dramatically. Besides, in near zero frequencies, the phase difference is 
insignificant which expresses quasi-steady behavior and prompt response of the flame. On the 
other hand, it can be observed that in convection-dominant region, f > 1, phase difference for 
various amplitudes approaches a constant value of about 270o. In convection-diffusion region, 
0.1 < f < 1, a dramatic increase at intermediate frequencies forms a peak. Fig. 5.c depicts the 
magnitude of the second mode which is approximately one order smaller than that of the first 
mode. Similar to the first mode, with the increase in excitation frequency, the magnitude 
approaches zero. Furthermore, with the increase of the amplitude of fluctuations, the 
magnitude of the response increases as well. It is observed that at about f = 0.1, which is equal 
to diffusion timescale, the magnitude increases locally and again forms a peak. The reason for 
such phenomenon can be attributed to the coupling between axial diffusion and excitation fre-  



 

 
 

Figure 5. Response function of heat release rate with respect to fuel mass fraction fluctuations 
as a function of excitation frequency for different amplitudes of excitation 

 
quency, which results in an abrupt change in the flame length. As the amplitude of the 
excitations increases, aforementioned peak moves toward the lower frequencies. 

The second harmonic phase is also similar to the first phase, as shown in Fig. 5.d. The 
second phase is unimportant at near zero frequencies which is resulted by the quasi-steady 
behavior of the flame. At the higher than 1 frequencies, the phase approaches toward a 
constant value of about 90o. It can be seen that heat release rate becomes in phase with fuel 
mass fraction fluctuations twice in convection-diffusion region. As amplitude of fluctuations 
increases, the frequency at which heat release rate is in phase with fuel mass fraction 
fluctuations goes up slightly.  

 
Response to velocity fluctuations 
In this section the influence of time independent spatially uniform velocity fluctuations will 
be discussed. Similar to previous section, the values, of the various parameters are chosen as 

2.3α
iF  , 7/2.3α

iA  and δ = 0.1. The ratio of the amplitude of the velocity fluctuations to its 

steady state value is selected as  u/uUr
~ 0.1, 0.3, and 0.5. 

The ratio of convection to diffusion timescales, with harmonic oscillations of the velocity 
field, goes up and down with time. In fact, when the instantaneous flow velocity rises, the 
residence time shortens and fuel, in order to diffuse into oxidizer, needs more axial distance. 
Consequently, the flame length increases. Likewise, the flame length decreases as the 
instantaneous flow velocity decreases. Fig. 6 displays the effects of velocity fluctuations on 
the flame shape at f = 0.5 and Ur = 0.5. In this case, the flame length varies between 2.1 and 
2.4. Fig. 6 shows the flame shape at the lower frequencies corresponding to diffusion 
timescale f = 0.1. The flame length varies between 1.5 to 3, which perfectly shows more 
intense flame response at lower frequencies. 

It was observed that the main effect of fuel mass fraction fluctuations was the appearance 
of wrinkles on the flame surface resulting from transverse diffusion. Such phenomenon, 

(a) (b) 

(c) (d) 



however, is not seen in the presence of the velocity fluctuations whose dominant effects are 
only on the flame length. Furthermore in this case, flame clip-off and flame structure 
transition from being overventilated to being underventilated are not observed.  

Fig. 7 shows response function of heat release rate for various amplitudes of velocity 
fluctuations for Pe = 10. In Fig. 7.a, the magnitude of the first harmonic mode for all 
amplitudes of fluctuations decreases with a rise in frequency. In diffusion as well as 
intermediate convection-diffusion regions, this decrease occurs at a higher rate to the point 
where it reaches a minimum value at f = 0.7. In addition, in convection-dominant region, 
similar to fuel mass fraction fluctuations, the magnitude of the first mode becomes zero. 

With the increase of the amplitude of the velocity fluctuations, the magnitude of first 
harmonic mode rises distinctly. Fig. 7.b displays the first harmonic phase. As it can be 
observed that at all frequencies, the phase is negative which expresses the time lag of heat 
release rate behind velocity fluctuations. At very low frequencies, the phase difference is 
about zero and therefore the flame responds immediately to perturbations. In diffusion- 
dominant region, f < fD, the increase of the amplitude of the velocity fluctuations has no effect 
on phase difference and with the increase of the frequency, phase difference increases. In 
convection-diffusion region, fC < f < fD, the increase of the amplitude of the perturbations 
leads to a small forward shift in phase difference and eventually in convection-dominant 
region, the phase difference for all velocity fluctuation amplitudes approaches a constant 
value. 

Fig. 7.c shows the magnitude of the second harmonic mode. Since the magnitude of the 
second mode, in comparison to that of the first mode, is very small, it is possible to fit the heat 
release rate oscillations with a sine function. In diffusion- dominant region, a maximum, due 
to axial diffusion, is seen. There is also, in convection- diffusion region, a small maximum at 

 

 

 
Figure 6. Flame shape at different time in a half cycle for Ur = 0.5 at a) f = 0.5 b) f = 0.1 
 

f = 0.7, which precisely corresponds to the minimum observed in the magnitude of the first 
mode. The influence of the increase in the amplitude of the velocity fluctuations on the 
magnitude of the second mode is similar to that of the first mode. Fig. 7.d shows the second 
harmonic phase difference. The slope is generally larger than the first phase and results in 
more cycles. At higher frequencies second phase difference approaches a constant value. 

 
Response to simultaneous fluctuations of inlet mass fraction and flow velocity 
In this section the simultaneous effects of fuel mass fraction and velocity fluctuations are to 
be examined. In addition, the phase difference between these two parameters (φ) is 
considered. Parameters 2.3α

iF  , 7/2.3α
iA  and δ = 0.1 have the same values as the previous 

(a) 

(b) 
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Figure 7. Response function of heat release rate with respect to velocity fluctuations as a 
function of excitation frequency for different amplitudes of excitation 

 
sections. In this case, the ratio of the amplitude of fuel mass fraction fluctuations to its steady 
value equals αr = 0.3 and the ratio of the amplitude of the velocity fluctuations to its steady 
value equals Ur = 0.5. The effect of φ is studied for three different values 0o, 90o, and 180o. 

In the two previous sections, it was observed that the major consequence of the fuel mass 
fraction excitations is wrinkle formation, clip off, and flame transition from being 
overventilated to being underventilated. Also, flow velocity fluctuations have conspicuous 
effect on the flame length. Therefore, with concurrent excitation of these two parameters all 
of such phenomena are observed. 

The Stoichiometric flame surface is obtained in a cycle at f = 0.5 with Ur = 0.5, αr = 0.5, Pe 
= 10, and φ = 90o, Fig. 8. The wrinkles observed on the flame surface are due to fuel mass 
fraction fluctuations which indicate the flame structure is more sensitive to mass fraction 
fluctuations than velocity perturbation. By increasing phase difference to φ = 180o, the time 
when clip off starts decreases and the size of detached part increases, Fig. 9. As a 
consequence, the phase difference between fuel mass fraction and velocity fluctuation on 
flame structure influences the start time and the size of clip-off. 

Fig. 10 shows the response function of heat release rate with respect to simultaneous fuel 
mass fraction and flow velocity fluctuations as a function of excitation frequency. Fig. 10.a 
shows the magnitude of the first harmonic mode versus frequency for three values of φ = 0o, 
90o, and 180o is depicted. The magnitude of the first harmonic mode for φ = 0o and 90o 
decreases as frequency increases while a different behavior can be seen for φ = 180o as a peak 
formation at the diffusion-dominant region. In general, as the phase difference between fuel 
mass fraction and flow velocity increases, the magnitude of the response function goes down. 

Fig. 10.b shows the phase of the first harmonic mode.  At low frequencies, in diffusion-
dominant region, the phase difference for φ = 0o and 180o is zero; in fact the flame responds to 
the fluctuations rapidly.  While in φ = 90o, in diffusion dominant region, phase difference has 
nonzero value.  In convection-dominant region, the phase difference for  φ = 0o  and 180o tends 

(c) 

(a) (b) 

(d) 



 

 
Figure 8. Flame shape at different time in a cycle at f = 0.5, αr = 0.5, Ur = 0.5, and φ = 90o 

 

 

 
Figure 9. Flame shape at different time in a cycle at f = 0.5, αr = 0.5, Ur = 0.5, and φ = 180o 

 
to approach to the same constant value, whereas for φ = 90o this very value is smaller. 

Fig. 10.c shows the magnitude of the second harmonic mode versus frequency. It was 
discussed in the previous section that the magnitude of the second harmonic mode for the 
velocity fluctuation is in a low order which is why for φ = 0o the curve is almost similar to 
Fig. 5.c with αr = 0.3. The magnitude of the second harmonic mode compared to that of the 
first mode is by far larger. The behavior of the second mode for φ = 90o is similar to its first 
mode and the magnitude has just gone down slightly. Fig. 10.d shows the second harmonic 
phase. At low frequencies, the phase difference for three values of φ is zero and it approaches 
a constant value at higher frequencies. 

 
Conclusion 
This paper examines the unsteady response of a laminar diffusion flame to harmonic mass 
fraction oscillations and also to flow velocity fluctuations in three cases of: ) only mass 
fraction fluctuations, ) only flow velocity fluctuations, and ) both mass fraction and flow 
velocity fluctuations together for three phase difference between inlet perturbations. The 
Burke-Schumann 2-D symmetric configuration has been applied where fuel and air enter 
mixing chamber through two inner and outer coaxial slots, respectively. It is assumed that the 
flow is incompressible, uniform, and inviscid. The transverse component of velocity is 
neglected and only axial velocity is considered. Consequently, diffusion is the only 
mechanism for mixing where diffusion coefficient is taken constant within the domain.  With 
the presence of small mass fraction and velocity perturbations, mixing equation have been 
solved and as a result the Schwab–Zel’dovich variable has been found all over the mixing 
field . Regarding mixed-is-burnt assumption, the flame surface structure obtained as a locus of  



 

 
 

Figure 10. Response function of heat release rate with oscillations of fuel mass fraction and 
flow velocity as a function of excitation frequency for φ = 0o, 90o, 180o, αr = 0.3, Ur = 0.5 
 

stoichiometric points. The results show that the main effect of mass fraction fluctuations on 
the flame structure is wrinkling. In addition, flame clip-off is seen at higher amplitude of 
perturbations. As the frequency reduces, the transitions between overventilated and 
underventilated flame is observed. On the other hand, the flame responds to flow velocity 
fluctuations in the form of the flame length variations which is more intense in lower 
frequencies. In this case, flame wrinkling, clip-off, and overventilated to underventilated 
transition have not been seen. When both mass fraction oscillations and flow velocity 
fluctuations are present, not only flame wrinkling and clip-off occur but also the flame length 
varies.  

With the assumption that heat release rate is proportional to the flame surface area, which 
is normally used for premixed flame, the flame heat release rate response to mass fraction 
oscillations and flow velocity fluctuations with respect to excitation frequency is found. It is 
seen that flame responds differently in distinct frequency regions, known as convection-
dominant region, f > fC, diffusion-dominant region, f < fD, and convection-diffusion region, fD 
< f < fC. In all three cases, the increase in amplitude of perturbations causes the magnitude of 
response to increase which approaches zero as the excitation frequency rises up to convection 
region. In addition, the phase of flame response is always negative which indicates that heat 
release lags behind perturbations. In convection-dominant region, the phase reaches a constant 
value which is different for each amplitude. When the perturbations are only from flow 
velocity oscillations, it is seen that the magnitude of the second mode is insignificant so that 
the heat release rate can be fitted by a sinusoidal function. For the third case, by an increase in 
inlet phase difference between inlet perturbations, the magnitude of response decreases. There 
are some differences between the present results and Tyagi et. al [13]. In accordance with 
present work, magnitude of the first mode goes up as amplitude of inlet mass oscillations 
increases which is physically acceptable; however, it is in contrast with the results obtained by 
Tyagi [13]. Besides these differences, the whole behaviors of response functions are similar in 

(a) (b) 

(c) (d) 



both works whereas a shift in values can be seen. This shifting results from difference in heat 
release modeling. As a matter of fact, a large number of issues about diffusion flames 
instabilities have yet to be found. Reducing some assumptions applied in this work, such as 
uniform pattern, would lead to more precise results.       
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