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Abstract
In order to determine the mean rate of product creation within the framework of the
Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined
with a simple closure of turbulent scalar flux developed recently by the present authors
based on the flamelet concept of turbulent burning. The model combination is assessed by
numerically simulating statistically planar, one-dimensional, developing premixed flames
that propagate in frozen turbulence. The mean rate of product creation yielded by the
combined model decreases too slowly at the trailing edges of the studied flames, with the
effect being more pronounced at longer flame-development times and larger ratios of rms
turbulent velocity u′ to laminar flame speed SL. To resolve the problem, the above closure
of turbulent scalar flux is modified and the combination of the modified closure and TFC
model yields reasonable behaviour of the studied rate. In particular, simulations indicate
an increase in the mean combustion progress variable associated with the maximum rate
by flame-development time and u′/SL, in line with available DNS data. Finally, the
modified closure is validated by computing conditioned velocities and turbulent scalar
fluxes in six impinging-jet flames and the use of the TFC model for simulating such
flames is advocated.

Introduction
The TFC model of premixed turbulent combustion put forward by Prudnikov [1], extended
by Zimont [2], and further developed and validated in Refs. [3, 4] is widely used in CFD
studies of various flames. The model provides a joint closure

−∇ · ρu′′c′′ + W = ∇ · (Dt∇c̃) + Ut |∇c̃| (1)

of the two terms on the right hand side (RHS) of the well-known [5] balance equation

∂

∂t
(ρ̄c̃) +∇ · (ρ̄ũc̃) = −∇ · ρu′′c′′ + W. (2)

Here, t is time, u is the flow velocity vector, c is the combustion progress variable, ρ is the
gas density, W is the mass rate of product creation, Dt and Ut are turbulent diffusivity
and burning velocity, respectively, q̄ is the Reynolds-averaged value of a quantity q with
q′ ≡ q − q̄, and q̃ ≡ ρq/ρ̄ is the Favre-averaged value of a quantity q with q′′ ≡ q − q̃.

The simplicity and numerical efficiency of the joint closure given by Eq. (1) makes it
particularly interesting for multidimensional RANS simulations of combustion in various
engines and the closure is implemented into many commercial CFD codes used for these
purposes. However, the model does not yield a separate closure of the reaction term W
and this limitation impedes applying the model for studying certain important issues, e.g.
pollutant formation in premixed turbulent flames.



The problem can be overcome by combining the discussed joint closure with a model of
the turbulent scalar flux ρu′′c′′ and, subsequently, by evaluating W from Eq. (1). However,
because the mainstream approach to simulating the flux consists of numerically solving a
complicated balance equation for ρu′′c′′, which involves a number of unclosed terms and
tuning constants, as reviewed elsewhere [6], the combination of such an approach with
the TFC model would destroy the key advantages of the latter tool, such as simplicity,
numerical efficiency, and the lack of tuning parameters.

Therefore, in order to calculate the rate W from Eq. (1) and to retain the above
merits of the TFC model, a simple closure of the turbulent scalar flux is required. The
first attempt to propose such a simple closure was undertaken by Zimont and Biagioli
[7, 8], but certain features of their model were put into question in Refs. [6, 9].

Another simple model for evaluating the normal (to the mean flame brush) component
of ρu′′c′′ was recently developed by the present authors [9] for the flamelet regime of
premixed combustion. The model was validated [9] by computing conditioned velocities
and turbulent scalar fluxes measured by Cho et al. [10], Cheng and Shepherd [11], Li et
al. [12], and Stevens et al. [13] in six premixed flames each stabilized in an impinging jet.

The current work was initially aimed at (i) further assessing this simple model and
(ii) investigating its compatibility with the TFC model in order to evaluate the rate W
from Eq. (1). However, the obtained results indicated that the former model had to be
improved in order to be compatible with the TFC model. The present paper is mainly
focused on the latter point, while the results of qualitatively testing the former model
(improved here) are reported in an accompanying article [14].

In the next section, the problem is stated and an analytical solution is presented in
the third section. The obtained results are discussed in the fourth section. The improved
model is applied to the aforementioned six impinging-jet flames in the fifth section.

Statement of the Problem
Let us consider a statistically planar, one-dimensional, developing premixed flame that
propagates from right to left in frozen turbulence. The flame expansion and mean struc-
ture are described by Eq. (2) and the following Favre-averaged continuity equation

∂ρ̄

∂t
+

∂

∂x
(ρ̄ũ) = 0. (3)

Here, x is spatial coordinate and u is the x-component of the flow velocity vector. The
following analysis will be performed in the coordinate framework attached to the mean
flow of the unburned mixture, i.e. ū(−∞) = 0.

We assume that the probability of finding intermediate values of 0 < c < 1 is much
less than unity everywhere so that the well-known BML expressions [5, 15]

ρbc̄ = ρ̄c̃ =
c̃

1 + τ c̃
, (4)

ρu′′c′′ = ρ̄c̃(1− c̃)(ūb− ūu) = ρ̄(1− c̃)(ũ− ūu) = (1− c̄)(ũ− ūu) =
ρb

ρ̄
(1− c̄)(ū− ūu) (5)

hold. Here, τ = ρu/ρb−1 is the heat-release factor, subscripts u and b designate unburned
and burned mixture, respectively. For simplicity, all relevant quantities will be normalized
using the density of the unburned gas in the following, i.e. symbols ρ and W will designate
ρ/ρu and W/ρu, respectively, and, accordingly, ρu = 1.



The turbulent transport term on the RHS of Eq. (2) is closed invoking Eq. (5) and
the following simple expression

(1− c̄)∇ · ūu = [(uu)′f · (n′)f ]f |∇c| = bu′|∇c| = bu′Σ =
bu′

SL

W (6)

obtained and validated recently by the the present authors [9]. Here, SL is the laminar
flame speed, Σ = |∇c| is flame surface density, u′ is the rms turbulent velocity at the
leading edge of turbulent flame brush, b = 1.1 is a constant, n = −∇c/|∇c| is the unit
vector normal to flamelet, subscript f designates surface-averaged quantities, i.e. q̄f ≡
q|∇c|/|∇c|, and (q)′f ≡ q− (q̄)f . Equation (6) allows for W = SLΣ in the flamelet regime

of premixed combustion and invokes the following assumption [(uu)′f · (n′)f ]f = bu′.
Within the framework of the TFC model, Eqs. (1)-(4) have exact solution

c̄ = 1 − 1

2
erfc

(
ξ
√

π
)

= 1 −
√

1

π

∫ ∞

ξ
√

π
e−ζ2

dζ, (7)

as proved elsewhere [16]. Here,

ξ =
x− xf (t)

∆t(t)
, (8)

xf = xf (t = 0)−
∫ t

0
Ut(ϑ)dϑ (9)

is the spatial coordinate of an iso-surface characterized by c̄ = 0.5, and

∆t =
(
4π
∫ t

0
Dt(ϑ)dϑ

)1/2

(10)

is the mean flame brush thickness determined using the maximum gradient method.
A particular goal of the present study is to investigate the behavior of the rate W

calculated using Eqs. (2)-(10).

Solution
Substitution of a c̃(ξ) into Eq. (3), followed by integration from −∞ to ξ yields

ṽ =
1

ρ̄
− 1 + Γ

1

ρ̄

∫ ξ

−∞
ζ
dρ̄

dζ
dζ, (11)

where v ≡ u/Ut is the normalized velocity and

Γ ≡ 1

Ut

d∆t

dt
. (12)

To find a solution for the velocity ūu conditioned on unburned mixture, let us rewrite
Eq. (2) in the following form [17]

∂

∂x
[(1− c̄)ūu] =

∂c̄

∂t
−W (13)

using Eqs. (3), (4), and (5). Substitution of a c̄(ξ) and Eq. (6) into Eq. (13) yields

∂v̄u

∂ξ
=

1

1 + sL

dc̄

dξ

v̄u + 1− Γξ

1− c̄
, (14)



where sL = SL/(bu′) is the normalized laminar flame speed. One can easily check by
substitution that Eq. (14) supplemented with the boundary condition of v̄u(−∞) =
v̄(−∞) = 0 has the following analytical solution

v̄u = (1− c̄)−s − 1− Γs(1− c̄)−s
∫ ξ

−∞
(1− c̄)s−1ζ

dc̄

dζ
dζ, (15)

where s ≡ (1 + sL)−1 < 1. Note that v̄u →∞ as c̄ → 1.
Equations (6) and (15) result in the following expression

ω ≡ ∆tW

Ut

= (1− s)

[
(1− c̄)−s − Γ

(
ξ + s(1− c̄)−s

∫ ξ

−∞
(1− c̄)s−1ζ

dc̄

dζ
dζ

)]
dc̄

dξ
(16)

for evaluating the normalized mean rate ω of product creation. It is worth noting that, for
the profile of c̄(ξ) invoked in the present simulations, ω tends slowly to zero at the trailing
edge of flame brush. For instance, at the trailing edge of a hypothetical fully-developed
flame, ξ →∞, Γ = 0, and Eq. (16) yields

ω → (1− s)(2πξ)se(s−1)πξ2

(17)

using Eq. (7). If a ratio of SL/u′ is low, then the parameter s is slightly smaller than
unity and a decrease in ω with ξ is weakly pronounced, as shown in Fig. 1.

The above solution involves the normalized ratio Γ defined by Eq. (12). During an
early stage of flame development, turbulent burning velocity is significantly less than its
fully-developed value Ut,∞ and Γ is large. As the flame develops, Γ decreases due to an
increase in Ut, which tends to Ut,∞, and a decrease in the rate of the growth of the mean
flame brush thickness. In a hypothetical fully-developed flame, Γ = 0. The highest value
of Γ is associated with a laminar flame embedded in a turbulent flow at t = 0. In such
a case, Γ scales as u′/SL at t → 0, because Ut → SL and d∆t/dt ∝ u′ according to the
Taylor theory of turbulent diffusion [18].

Results reported here were obtained invoking the following expressions

∆2
t = 4πL2θ

[
1− θ−1

(
1− e−θ

)]
, (18)

Ut = SL + CUu′Da1/4
[
1 + θ−1

(
e−θ − 1

)]1/2
, (19)

where L and τt = L/u′ are the integral turbulent length and time scales, respectively,
θ = t/τt is the normalized time, Da = τt/τc is the Damköhler number, τc = au/S

2
L is

the chemical time scale, au is the molecular heat diffusivity of the unburned mixture, and
CU = 0.4 is a constant. Equation (18) may be obtained by substituting Dt = u′L(1−e−θ),
which results from the Taylor theory of turbulent diffusion [18], into Eq. (10) and is
supported by experimental data reviewed elsewhere [1, 4]. Equation (19) is based on Eq.
(18), as discussed elsewhere [4]. The domain of applicability of Eqs. (18)-(19) is bounded,
e.g. Eq. (18) does not hold at θ � 1 and, probably, at u′ � SL.

Results and Discussion
Here, we restrict ourselves solely to analyzing the behaviour of the rate ω, while the
simulated profiles of the normalized scalar flux ρv′′c′′ are reported in [14].

Dotted-dashed lines (curves 1) in Fig. 1 indicate that a decrease in the mean rate of
product creation, calculated using Eq. (16), is too slow at the trailing edge of flame brush



Figure 1: Dependencies of the normalized mean rate of product creation ω/ max {ω(ξ)}
on the Favre-averaged combustion progress variable c̃, calculated at various normalized
flame development times θ and various ratios of u′/SL, specified in headings. Curves 1,
2, and 3 have been obtained using b = 1.1, Eq. (20) with b1 = 1.7 and q = 0.5, and Eq.
(23) with b2 = 2.43 and q = p = 0.5, respectively.

and ω is finite even if 1− c̄ � 1. In line with Eq. (17), the effect is strongly increased by
u′/SL (cf. curves 1 in Figs. 1a and 1c or Figs. 1d and 1f). Moreover, the effect is more
pronounced at longer flame-development times (cf. curves 1 in Figs. 1a and 1d or Figs.
1c and 1f). As a result, the integral

∫ ξ(c̃)
−∞ ωdζ may be substantially lower than unity even

if 1− c̃ � 1, but u′/SL is sufficiently large, see Fig. 2a. Therefore, the use of Eq. (6) in
order to evaluate the rate W from Eq. (1) in multidimensional simulations may result in
substantially underestimating the total burning rate, with the effect being increased by θ
(cf. thin and bold lines in Fig. 2a) and especially by u′/SL (cf. dotted-dashed, solid, and
dashed lines therein). Furthermore, due to a strong increase in v̄u and a slow decrease in
ω as c̃ → 1, the two terms on the RHS of Eq. (2) may be finite and balance one another
even if 1 − c̃ � 1, see curves 3 and 4 in Fig. 3a. All these trends indicate that Eq. (6)
with a constant b is incompatible with the TFC model.

To resolve the problem and to obtain a stronger decrease in the normalized rate ω as
c̃ → 1, the constant b in Eq. (6) may be replaced with a decreasing function b(c̃), which
vanishes as c̃ → 1, in line with the DNS data by Im et al. [17] (see dotted-dashed line in
Fig. 6 in the cited paper). If, for instance,

b = b1(1− c̄)q, (20)

where 0 < q < 1, then, Eqs. (2)-(10) yield

∂v̄u

∂ξ
=

dc̄

dξ

v̄u + 1− Γξ

1− c̄ + sL1(1− c̄)1−q
(21)



Figure 2: Dependencies of the integral
∫ ξ(c̃)
∞ ωdζ on c̃ associated with the up integration

limit, calculated at different u′/SL specified in legends. Thin and thick lines have been
obtained for θ = 0.2 and 2, respectively. (a) b = 1.1, (b) Eq. (20) with b1 = 1.7 and
q = 0.5, and (c) Eq. (23) with b2 = 2.43 and q = p = 0.5.

Figure 3: Dependencies of various normalized terms on the normalized distance ξ, com-
puted at θ = 2 and u′/SL = 10 using either (a) b = 1.1, or (b) Eq. (20) with b1 = 1.7 and
q = 0.5, or (c) Eq. (23) with b2 = 2.43 and q = p = 0.5. 1 - (∆t/Ut)ρ̄∂c̃/∂t, 2 - ρ̄ṽdc̃/dξ,
3 - −∂ρv′′c′′/∂ξ, 4 - ω. SL = 0.4 m/s, au = 0.222 cm2/s, τ = 6, L = 5 mm.

and

ω ≡ ∆tΩ

Ut

=
v̄u + 1− Γξ

1 + sL1(1− c̄)q

dc̄

dξ
, (22)

where sL1 = SL/(b1u
′). The former equation was numerically integrated using the method

of Runge-Kutta, followed by evaluation of the normalized rate using Eq. (22).
Results obtained with q = 0.5 and b1 = 1.7 (the choice of this value of b1 will be

explained in the next section) are shown in solid lines (curves 2) in Fig. 1, as well as in
Figs. 2b and 3b. This modification of the model substantially improves the behaviour of
the rate ω at the trailing edge of the flame brush (cf. solid and dotted-dashed lines in
Fig. 1, or Figs. 2a and 2b, or Figs. 3a and 3b), but the improvement is insufficient at
high ratios of u′/SL (see solid lines in Figs. 1c and 1e, or dashed lines in Fig. 2b).

To further improve the model, it is worth remembering that Eq. (6) was obtained by
assuming that [(uu)′f · (n′)f ]f = bu′ [9]. In the limit case of u′/SL → ∞, the influence of
flamelets on turbulence appears to be negligible and the above correlation seems to vanish.
Therefore, it is tempting to assume that b in Eq. (6) decreases when u′/SL increases, e.g.
b ∝ (1 + u′/SL)−p, where p > 0. Combining this assumption with Eq. (20), we have



b = b2
(1− c̄)q

(1 + u′/SL)p
(23)

and Eqs. (21)-(22) hold provided that sL1 is replaced with sL2 = SL/(b2u
′).

Results obtained with q = p = 0.5 and b2 = 2.43 (the choice of this value of b2 will be
explained in the next section) are shown in dashed lines (curves 3) in Fig. 1, as well as in
Figs. 2c and 3c. The use of Eq. (23) substantially improves the behaviour of the rate ω
at the trailing edge of the flame brush even at ratios of u′/SL as large as 10. Because the
flamelet concept used to obtain Eq. (6) in Ref. [9] is not valid in highly turbulent flames,
as reviewed elsewhere [6], testing the above model at ratios of u′/SL significantly larger
than 10 does not seem to be meaningful. It is also worth noting that although Eq. (22)
allows ω to be negative if ξ > 0 and Γ is sufficiently large, we did not observe negative ω
in our simulations when Eq. (23) with q = p = 0.5 and b2 = 2.43 was used.

As a whole, dashed lines in Fig. 1 appear to indicate reasonable behaviour of the rate
ω, which seems to be consistent with available data. Even if quantitatively testing our
numerical results shown in Fig. 1 does not seem to be possible for a number of reasons
(e.g. the shortage of available experimental data, the strong dependence of the computed
ω(c̃)-curves on flame-development time and the ratio of u′/SL, the lack of target-directed
investigation of the influence of either θ or u′/SL on the shape of the ω(c̃)-curve, etc.),
qualitative assessment could be done by invoking DNS data on flame surface density Σ and
mean scalar dissipation rate χ̄c, because the mean rate W is commonly considered to be
proportional to both Σ and χ̄c in the flamelet regime of premixed turbulent combustion.

In particular, our simulations yield an increase in the value c̃m, associated with the
maximum of ω(c̃), by u′/SL (cf. Figs. 1a, 1b, and 1c or Figs. 1d, 1e, and 1f) and by
flame-development time (cf. Figs. 1a and 1d, or Figs. 1b and 1e, or Figs. 1c and 1f) and
the same trends were already documented in DNS.

First, Hult et al. [19] claimed that their DNS indicated a shift of the observed peak
in Σ(c̄) “towards the burned side with increasing u′/SL” (see Fig. 3 in the cited paper).
This trend is also pronounced in Fig. 2 by Chakraborty et al. [20], Fig. 7 by Han and
Huh [21], and Fig. 7 by Lee and Huh [22].

Second, DNS by Swaminathan and Grout [23] indicated a shift of the observed peak
in χ̄c(c̃) towards the trailing edge of flame brush, as the flame developed, and a similar
shift was observed for Σ(c̄) in a couple of DNS studies, see Fig. 8b by Trouvé and Poinsot
[24], Fig. 3 by Hult et al. [19], Fig. 2 by Chakraborty et al. [20], Fig. 7 by Han and Huh
[21], and Fig. 7 by Lee and Huh [22].

The fact that the same trends in the dependence of c̃m on u′/SL and flame-development
time were observed in our simulations and previous DNSs qualitatively support the present
model. Other results that qualitatively support it are discussed elsewhere [14].

A Quantitative Test
As shown above, substitution of Eq. (23) into Eq. (6) allows us to obtain reasonable pro-
files of W in developing statistically planar, one-dimensional premixed turbulent flames,
whereas Eq. (6) with b = 1.1 yields too slow decrease in W as c̃ → 1. However, the latter
closure was quantitatively validated by simulating six impinging-jet flames [9], while the
capability of the modified closure for predicting the same experimental data is unclear.
Accordingly, the same six flames were numerically studied not only setting b = 1.1, but
also invoking Eq. (23). Because the sole difference between the present computations and
simulations discussed in detail in Ref. [9] consists of the use of Eq. (23) instead of b = 1.1,



Figure 4: Conditioned axial velocities (a) in case 1 studied by Cho et al. [10] and (b)
in flame s9 investigated by Cheng and Shepherd [11]. Symbols show experimental data.
Curves were computed using Eq. (6) either with b = 1.1 or invoking Eq. (23) with
q = p = 0.5 and b2 = 2.43. Thin and bold lines show velocities conditioned to unburned
and burned mixtures, respectively.

we refer the interested reader to Ref. [9] and restrict ourselves to reporting results.
Figures 4 and 5 show that the new closure given by Eq. (23) yields approximately the

same agreement with the experimental data obtained by Li et al. [12] from flame h4 (the
conditions of the measurements are reported in Table 1) and improves agreement with
the experimental data obtained from the other five flames.

It is worth stressing that we restricted ourselves to coarsely tuning the power exponents
q and p. At first, we simulated the six flames invoking Eq. (20) with q = 0, 0.2, and 0.5
and tuned the constant b1 for each q by varying b1 with step 0.1. The tuned values of b1

are equal to 1.1 for q = 0 (the original model [9]), 1.3 for q = 0.2, and 1.7 for q = 0.5,
with the best agreement with the experimental data being obtained for q = 0.5. Then,
we calculated b2,k = 1.7/(1 + u′k/SL.k)

p for every flame (k = 1, . . . , 6) and p = 0.5 or
1, followed by evaluation of the mean values b2(p) =

∑6
k=1 b2,k(p)/6. Because agreement

with the experimental data was better for p = 0.5 and b2(p = 0.5) = 2.43, this set of
the model parameters was finally selected when computing results shown in Figs. 4 and
5. Thus, we have run simulations with five sets of model parameters, i.e. (i) q = p = 0
and b = 1.1, (ii) q = 0.2, p = 0, and b = 1.3, (iii) q = 0.5, p = 0, and b = 1.7, (iv)
q = p = 0.5 and b = 2.43, and (v) q = 0.5, p = 1, and b = 3.5. The best agreement with

Table 1: Experimental conditionsa

Flame d U Fuel Φ SL τ u′ Reference
No. (m) (m/s) (m/s) (m/s)
1 0.075 5 CH4 1.0 0.365 6.513 0.4 Cho et al. [10], case 1
2 0.1 5 C2H6 1.0 0.76 7.004 0.6 Cheng and Shepherd [11], s9
3 0.03 3.6 CH4 0.89 0.307 6.077 0.25 Li et al. [12], h4
4 0.03 3.6 CH4 0.89 0.307 6.077 0.34 Li et al. [12], h6
5 0.035 3 CH4 1.0 0.365 6.513 0.4 Stevens et al. [13], set 2
6 0.035 2.25 CH4 1.3 0.213 6.112 0.3 Stevens et al. [13], set 3

aHere, d is the distance between the jet exit and the wall, U is the mean axial flow velocity
in the jet exit, and Φ is the equivalence ratio.



Figure 5: Normalized axial scalar flux ρu′′c′′/(ρ̄U) vs. normalized distance x/d (a) in
flames h4 (thin lines) and h6 (bold lines) studied by Li et al. [12] and (b) in flames “set
2” (thin lines) and “set 3” (bold lines) investigated by Stevens et al. [13]. Symbols show
experimental data. Curves were computed using Eq. (6) either with b = 1.1 or invoking
Eq. (23) with q = p = 0.5 and b2 = 2.43.

the experimental data was observed in cases (iii) and (iv). Because the numerical results
obtained in the two best cases were very close to another, only data computed in case
(iv) are plotted in Figs. 4 and 5. More experimental or DNS data are required to tune q
and p more precisely.

Note that the use of the TFC model for simulating impinging-jet flames may be put
into question by referring to a paper by Bray et al. [25] who claimed that the model failed
in predicting the burning rate in flames s9, h4, and h6 (i.e flames Nos. 2-4 in Table 1).
More specifically, Bray et al. [25] have found that the following simple expression

W = Ut |∇c̃| (24)

yields wrong dependence of W on c̃ if the turbulent burning velocity Ut is evaluated using
local Favre-averaged turbulence characteristics, which depend substantially on c̃ and are
strongly affected by unburned-burned intermittency.

As pointed out elsewhere [26], the model tested by Bray et al. [25] differs substantially
from the TFC model. In particular, the latter model does not address W , but provides
the joint closure given by Eq. (1), and this difference between Eq. (24) and the TFC
model is substantial. Indeed, let us consider Eqs. (2) and (3) closed invoking Eq. (1).
Along the axis of an impinging-jet flame, they read [25, 27]

d%̄w̃

dz
+ 2%̄g̃ = 0, (25)

ρ̄w̃
dc̃

dz︸ ︷︷ ︸
I

= − d

dz
ρw′′c′′︸ ︷︷ ︸
II

+ Ω︸︷︷︸
III

+ 2ρ̄c̃(1− c̃)(ḡb − ḡu)︸ ︷︷ ︸
V I

= dt
d

dz

(
%̄
dc̃

dz

)
︸ ︷︷ ︸

IV

−ut
dc̃

dz︸ ︷︷ ︸
V

, (26)

with term VI being commonly neglected [8, 9, 25]. Here, z = x/d, w = u/U , g =
(d/U)(∂v/∂r)r=0, Ω = Wd/U , ut = Ut/U , and dt = Dt/(Ud) are the normalized axial
distance, axial velocity, radial gradient of the radial velocity, mean mass rate of product
creation, burning velocity, and turbulent diffusivity, respectively. The results of the afore-
mentioned numerical simulations of the six impinging-jet flames, performed by neglecting



Figure 6: (a) Different terms in Eq.(26), normalized using ρu, d, and U , vs. the Reynolds-
averaged combustion progress variable. Curves have been computed for the flame h6
investigated by Li et al. [12]. Term numbers are specified in legends. (b) The radial
gradient of the Favre-averaged radial velocity, normalized using d and U , vs. the Reynolds-
averaged combustion progress variable. Flame numbers are specified in legends.

term VI [9], allow us to evaluate terms I-V in Eq. (26), provided that the normalized
burning velocity and diffusivity are closed. To do so, the following two expressions

ut =
∫ 1

0
Ωdc̄, dt =

δ2
t

π

∫ 1

0
g̃dc̄ (27)

were invoked, where δt = ∆t/d is the normalized flame brush thickness. The former closure
results from integration of Eq. (26) with term VI being neglected. To substantiate the
latter closure, let us substitute Eqs. (4) and (7) into Eq. (26). Then, we obtain

ρ̄w̃ =
dt

δt

(
−2πξρ̄− τ

τ + 1
e−πξ2

)
− ut. (28)

Differentiating this equation and using Eqs. (4), (7), and (25), we arrive at

2ρ̄g̃ = − 1

δt

dρ̄w̃

dξ
= 2πρ̄

dt

δ2
t

. (29)

Results computed for flame h6 investigated by Li et al. [12] are shown in Fig. 6a
and similar results were obtained for the other five flames. The transport terms II and
IV have opposite signs, with the magnitude of the former term being comparable with
the magnitudes of terms I, III, and V. Therefore, the source terms III and V depend
differently on the mean combustion progress variable and Eq. (24) disputed by Bray et
al. [25] is inconsistent with the TFC model.

We may note also that the difference in terms I, IV, and V (see dotted line) is signifi-
cantly less than terms I and V, thus indicating that Eq. (1) holds in the studied flames.
Furthermore, Eq. (29) shows that the normalized radial gradient g̃ does not depend on
c̄ within the framework of the TFC model, provided that Eq. (7) well approximates the
axial profile of c̄(ξ). Our simulations (see Fig. 6b) do show that g̃ (computed as dis-
cussed in Ref. [9]) is approximately constant in the largest part of a flame brush, with
the exception of the trailing edge (c̄ > 0.8), in all the six studied cases.



Conclusions
In order to determine the mean rate W of product creation within the framework of the
TFC model of premixed combustion, the model was proposed to be combined with a
simple closure of turbulent scalar flux, see Eq. (6), developed recently by the present
authors [9] based on the flamelet concept of turbulent burning.

The model combination was assessed by simulating statistically planar, one-dimensional,
developing premixed flames that propagated in frozen turbulence. Because the computed
mean rate of product creation decreases too slowly as c̃ → 1, especially at large u′/SL,
the closure given by Eq. (6) with a constant b is incompatible with the TFC model.

To resolve the problem, the closure was modified, i.e. the constant b in Eq. (6) was
replaced with a function b(c̄, u′/SL), given by Eq. (23).

The combination of the modified closure and the TFC model yields reasonable be-
haviour of the rate W . In particular, the present simulations indicate an increase in the
mean combustion progress variable associated with the maximum of W as a function of
c̄ by flame-development time and u′/SL, in line with available DNS data.

The modified closure was validated by computing conditioned velocities and turbulent
scalar fluxes in six different impinging-jet flames.
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