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Abstract

We develop an alternative approach to the turbyesrmixed combustion theory that permits
to eliminate well known challenge of modelling sédominantly counter-gradient scalar flux
and the stress tensor, which must describe, incp&at, observed in experiments abnormal
increasing in the premixed flame of the velocityctuations. We analyse two combustion
mechanisms: instantaneous combustion takes plaeeiikled laminar or microturbulent
flame. The approach is based on derived in the rpapeditionally averaged momentum
equations instead of traditionally used for modellFavere averaged one. We state not only a
system of the unclosed equations where requiringeffing unknowns are the conditional

turbulent stresses in the unburned and burned dagg&s,,(u;u;), and the mean chemical

sourceW, but also develop model equations in the termghekse unknowns. Turbulence in
model equations is characterized by conditionattkinenergiesk,,k, and dissipation rates

£,,&,, the stresses are describggiu’),,(uu}), in the standard gradient form using

conditional turbulent viscosity coefficients, ,,v,,. We state the modepW using the

theoretical expression for the turbulent flame sp&eich we derive using Kolmogorov type
assumptions of statistical equilibrium of the snszidle reaction structures and at the same
time nonequilibrium large-scale ones. The scalat 8nd stress tensor do not require special

modelling as the former is described in terms ef ¢tbnditional mean velocitie, and G,

which are known from the conditionally averaged reatnm equations, and the latter
depends additionally on the conditional stress(eg})u,(m)b that are described by the
turbulence model. This approach was developedarctmntext of the agreement with Ansys

with the aim to reformulate presented in Fluent @kX codes TFC combustion model on a
more theoretically justified basis, which yielddamnal potentialities of the model

Introduction

We analyze turbulent premixed combustion. The rétezal basis of turbulent premixed
combustion modelling in the context of the currapproach is well known system of the
Favre averaged unclosed equations of combustiomygasrddynamics, which is as follows:

0 pc /0t +0{puc) +00pi'c" = pW (a), c=(p,/ p-D/(p,!p,~1) (b),

- — _ ~ 1)
dpt /ot + Opud) +00pd"d" = -0p (c), 8p/dt+00pu =0, (d),

where Favre averaging (weighted by the density rabke one) mean?i:p_a/ﬁ and
instantaneousa = a +a", notationa identifies Reynolds (ensemble) averaging. Ea)(is
and pW are the mean scalar flux and

= N

the balance combustion equation whewg



chemical source. Eq. fl) expresses the instantaneous progress variaimeerms of the
instantaneous densitp and the densitiep, and p, of unburned and burned gases. Eq.

~n—=n

(1c) is the momentum equation Whepm u" is the mean stress tensor with the components

" n

puu; in the Cartesian coordinates. Eqd(Lis the mass equations. Eqgsaftt) and Egs.
(1c,d)describe correspondingly the combustion and att@nlygdrodynamic sub-problems,
which are coupled due to common dengityand velocityﬁ Requiring modelling unknowns

4'" n

are pu'c and,c_)\N in the combustion sub-problem, apd"t" in the hydrodynamic one.

Our analysis refers to the case of the BML con¢Epivhere instantaneous combustion takes
place is strongly wrinkled thin sheet travelling neactants with the speed of the laminar
flameS, . In this case modelling of the transfer terms ihallenging problem as the scalar

" 1
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flux ol"c" is predominantly counter-gradient and cannot beapmated by the standard

II "

gradient expressiomii"c” = -D,[0c (D, is the turbulent diffusion coefficient), as wedl the

" n

components of the stress tenspu’u’ cannot be expressed accurately in terms of the

turbulent viscosity coefficient,. Advanced modelling of the scalar flux and stressethe
context of traditional approach is based on thbulent type approximations of the unknown

terms in the uncloseﬂu"c" and ,ou{' ; — equations [2]. The fundamental limitation of such

method is connected with the fact that the scdler dnd stresses are controlled not only by
turbulence, but also by gasdynamics (different saressdriven acceleration of relatively
heavy reactants and light products), while turbutgpe approximations mean the scalar flux
and stresses are treated as pure turbulent paramietehows in frequently used terminology
such as *“countergradient turbulent diffusion of tpeogress variable” and “turbulent
generation” in the premixed flame ([2], p. 558),iltthe nature of the countergradient scalar
flux and strong increasing of the velocity fluctoats in the flame has predominantly gas
dynamic nature. Using for modelling of the scalaxfin the impingent flame the turbulent

type approximations in the unclosgﬂn"c" — equation results in [2] that simulations for the

cases of a flame close to the wall with slightigreasing pressure across the flame and a
free-standing with strong decreasing pressure ginvee similar countergradient scalar fluxes,
Fig. 5and 6 in [2]. It means that turbulent tygmproximations do not describe properly the
gasdynamic effect, which negligible in the closd atrong in the free-standing flames. In the
papers [3-5] we present the scalar flux as a surooafributions of the gradient turbulent
diffusion and the countergradient gasdynamic effégbplication of this model to the
impingent flame results that in the closely semmigathe scalar flux is gradient, while in the
free-standing one the gasdynamic effect prevaikhénmost part of the flame and the scalar
flux is counter-gradient except the vicinity ofetfront edge of the flame, Figs. 3 in [5], p. 85.
The statement of this work is that developed h#egrative approach makes unnecessary any
special theories or models (including our “turbidgasdynamic” one [3]) for prediction of
the scalar flux and stress tensor as in the couwffetkte conditionally averaged equations they
do not require modelling. The reason is that indhge of thin instantaneous flame the scalar
flux and components of the stress tensor are desthy the known expressions

pu'c" = pt A-E)(G, - G,), 3)
pU" i =pL- C)(U ) +,0C(U )b+loc(u|b U U, —U; ), (4)
Whereu ub and (u i), (u i), are conditional averaged velocities and Reynsidssses
in the unburned and burns gases. We state belowutickosed conditionally averaged



equations of mass and momentum where requmng Imugjare only the conditional mean
stresses(u i), (u i)p and chemical sourcef)W PW . For application we state model
conditionally averaged equations of the —¢ tutbulence model for approximation of the

conditional mean stresses. We also present a Kamu® type analysis, which is based on
an assumption of the statistical equilibrium srsakle structures of wrinkled by turbulence

instantaneous flame, that yields a theoretical esgion for the chemical sour(ﬁlv. The

crucial point that permitted to state proposed radteve approach is deduced below
conditionally averaged momentum equations, whichantrast to known from the literature
ones [6-8] do not contain requiring modelling suga@averaged velocities and pressure terms.

The conditionally averaged mass equations
In the premixed flame takes place mstantaneoussfknamatlon due to combustion of the

conditional mean parametey, p,,U, = 0, pu,ub The intensity of this transformation, the
chemical source, is equal to the mass flow ratth@funburned gas through the instantaneous
flame is equal t@W = p,S,Z , where the flame surface densly equal to the mean flame

area per unit volume. To avoid invoking the tooltleé generalized function (at first glance
inevitable due to assumption of zero width of intt@aeous flame) we directly split up each
of these Favre averaged equations into two comdilip averaged ones using obvious identity

pa=pa,P,+paP =pa,@0-C)+p,3a,c, (5)

To deduce the conditionally averaged continuityatigums we transform Eq. (1d) using Eq.
(5). We putinita= landa=d. It results the following equation:

{olo, @-o)N/0t + Dp, @-©)d, 1}, +{0(0,5)/ 0t + 0 [o,chy )}, =0, 6)

where the expressions in the bra¢esand {} , refer to reactants and products. We can
easy to check that the expression in the secortebrare equal t§ , _W (For this we
must eliminated from Eq. (1a) using Eq. (3) and the obvious exgos:

—

pC = pc=p,C (), U=0,A-C)+0,C (b). (7)
Then using Eq. (6) giveg§ , = —,va/, I.e. the conditional mass equations are as falow
d[p, 1-c))/at+0p, 1-C)u,] = -PW (a), 8(p,C)/dt +0{p,Ch,) = PW (b). (8)

The conditionally averaged mass equations

For deriving the conditional averaged momentum ggna we transform similar Eq. (1¢) and
present it as a sum of two groups of the terms¢lvhontain conditional averaged parameters
referring only to reactants or products. For this imsert in Eq. (1c) the expressions yielded
by Eq. (5) witha=10 and a=Uuu. It results the following equation

oL, @-0)d,1/6t + 0o, A-c)G,4,)] + 0 Qp, A-C)TT), 1},

9
+oo,eu,,) 10t + Dp,E0,0,) + 0 W, c(@T),)), = -0IA-C)P,] - O(Eh,). ©
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where (W)u ('d"), and p,, p, are conditionally averaged turbulent stresses an
pressures. Splitting of Eq. (9) yields the follogriconditional momentum equations:

dlp, 0-T)G,]/at + O p, A-C)d,G,)] + O p, A-C)@T),] = -0lA-T)p,] + F, (a),

_ (10)
Al p,Cl, 1/ 0t + O D p,l,G,)] + 0 Qo,c(@d’),] = -0(Cp,) + F, (b),

where Eu and Eb are equal opposite forces due to impulse exchhetgeen reactants and
products caused by combustion.. These volume fodecesiot appear in the Eq. (1c) as

Ifu + Eb =0. It is obvious that Eq. (1c) is a sum of Egs. {1&ad (10Db).
To find F,.and F, we attract the equation of the momentum consemath the boundary
that divides the unburned gas wii), p, andu,, p,, which is as follows:

PW (T, —G,) =-(0p). [-TI(1—C)P..] - O DP,)] (11)

where [p, is the pressure gradient generated by combustioich yields transformation
u, = U,. We represent RHS of Eqg. (1c) as follows:

~0p = -0p +{0p, + (G, —0,)pW} = -0p° +0, oW ~ 0,0V (12)

where the expressions in the braces is equal meaodordance with Eq. (11) agl = p— ..
and splitting Eq. (12) we have as follows:

=-0[(1-¢)p,] +TI(1-T) P, ] - U, oW =-0[A1-C)p;]- M (a),
= -0[(1-¢) Py ] + CI(L—C) P ] — U, AW = -0(C 0p;) + U, AN (b) (13)
F, = -0[(1-C)P.,] -G, AW (c), F,=-0[1-C)P,,]~TyPW (d),

where p; = p, — P., and .p,, = P, — P.,- RQs. (13a) and (13b) present correspondingly the

RHSs of Egs. (10a), and (10b), Egs. (13c) areesgmon forlgu and Eb in Egs. (10). So
Egs. (10) and (13) yields directly the followinghciitional averaged momentum equations:

oo, -0),]/0t+ 0 llp, L-O)G,0,)] + Dllp, A-O)UW), = -LA-OP]-UAW @, 1y
d[p,C,]/ 3t + O pct,G,)] + 0 0p,c(U'd),] = -0(C 0p;) + U, AW (D).

In Egs. (14)p,; and p, are the conditional mean pressures in the unbuanddurned
gasses in the case of combustion. We omit the itidéelow.



The system of the unclosed equation of turbulent premixed combustion B B
The system of the unclosed equations in termsetdnditionally averagedi,, p,, U,, P, -

and Reynolds averaged includes two scalar continuity equations Eqgs. (8)p vector
momentum equations Egs. (14) (i.e. 6 scalar equstiand one scalar equation Eq. (15):

F_)u _r)b :puSL |au _ab | (15)

Eq. (15) is the condition of the momentum consigonaon the boundary that divides gases
with conditional mean parametetis, p, and U,, p,. Known from the literature analogous

equation connects the surface averaged velocﬁg,eand ﬁsb, Eq. (13) in [7], is as follows:

N = (pi), Z = Uy OW — (pi) , X (16)

el
&

To gain a better insight into our considerationfing transform known Eq. (16). We present
the pressure terms as follows:

(pfi)g = Pu,A + P

'4"

i (a), (pn)sb psbn+ pui’ (b), (17)

I I

where the correlationg, ' and py i’ are in general case nonzero as the pressuresnind u
vector i are defined at the same adjacent surfaces. Buighore these correlations Eq. (16)
reduces to the Eq. (18a) and then rememberingdat p,S = to Eq. (18b):

= W iy, - Pun2 (3), 0,52 M, ~ Py,iZ = p,S, 2 iy, — Pz (b). (18)

3

PW [, - P,,AZ

It is evident from Egs. (14) thafi ~ G, — G, andf = (G, —G,)/|d, — G, |. Installing the latter
in Eq. (14b) we have the following |mpulse consépralaw :

Ps ~ Py = AuS, |ESJ _ada ). (19)

In our case there is no correlation betwerand p,, p, as the vectori is defined on the
surface, while the pressureg,, p, are defined in the unburned and burned gaseseHen

PW i, - P,Az = pW i, - iz, (20)

which after similar presented above manipulati@wices to Eq. (15).
The unknown terms in the > system Ec Egs. (8)) &l (15), which require modelling, are the

conditional Reynolds stressés )u,(u u;), and the chemical sourmv Others 3 scalar

(C,p,, P, and two vectors ((]u,ub) unknowns are described by 3 scalar (Eqgs. (8) &by (

and 2 vector (Egs. (14) equations of the systerh.ofklers Reynolds and Favre averaged
variables of the problem can be expressed in tesfndefined by the system variables
C,p,, Py.U,.U,. But we think that more convenient for practiegdplications (especially
keeping in mind an opportunity of implementationttie commercial code) to state a system
that described all conditionally, Reynolds and Eaaveraged variables of the problem
directly, i.e. avoiding their post-processor sintioias.



This system is as follows:

9 p¢ /ot + 0 [puc = -0 0oi'c” + pW (a),
A:ip=(@L-C)p, +Cp, = p,N[1+C(p,/ p, ~1)] (b),
¢ =p,E /P, +Elp, +E(0, — p,)] (0), AI'C = PEL-E)(E, ~1,) (d).

- - B (21)

dp/ot+00pCt =0 (6), T =0, (1-E)+G,C (f),
d(pcu, )/ ot + 0 [{pTu,U,) = -0 [EC(U'd"), — O(C 0p, ) + U, (BW) (g),
Ap@A-C)y,]/ot+00p-C)u,0, =-0Qpa-E)(u'd’),]
- O[(1-©)p,] - G, (BW) (h), pu-pb=puSLIUu-UbI (i),
dpd /0t + 0 pud) + 0 0pa"a" = -0p (j),
pU" i =pL- C)(U )+,0C(U )b+loc(u|b U U, —U; ) (K).

We split the system into two coupled subsysteinand B, which describe correspondingly
the combustion and hydrodynamic sub-problems. E4.a)( is the traditional balance
combustion equation; Eq. (21b) expresgesn terms of € and € ;Eq. (21c) expresses in

terms of € ;Rq. (21d) express the scalar flux in terms of dbed by the system conditional

4'" n

mean velocities, i.e,oi'c’ does not need modelling. Eq. (21e) is the glokmitiouity
equation, Eq. (21f) expresses the Favere averagledity in terms of conditional mean ones;
Egs. (21g) and (21h) are correspondingly conditigreaveraged momentum equations for
the burned and unburned gases, Eq. (21i) exphnessnpulse conservation on the boundary
that divides the unburned and burned gases; Eq) i&1he global impulse equation, Eq.
(21k) describes the components of the stress tehabrappear in Eqg. (21j), i.e. the stress
tensor, similar to the scalar flux, do not requiredeling. The LHSs in Egs. (21g) and (21h)
are modified in comparison with Egs. (14a) and jl4ding obvious relationg,c = p¢ and

p,@-C)=p@-cC). In the system Egs. (21) we keep traditional ingremixed combustion

theory Favre averaged combustion equation in tesinge, and the global continuity and
momentum equations. The only unknowns in the systhat require modelllng are

qIﬁl qI—'I

conditional averaged turbulent stresg¢esi’) ,,(G't4"), and mean chemical sour,dvA/

4’" n " n

while ¢,C ,B,U,Uu,ub, P, Py, QU"C’, puiu; are known as they described by Egs. (21)

Modelling of the conditional Reynolds stresses
We start from the Favre averaged equations oftdmelard"k —£" turbulence model:

a(pk)/at +d(pl,k)/dx, = —pulu’od, /9x,
~ a),
+0|p(v, /o, )ok /ax]/ax. - pE

22
d(pE) /ot +0(pu,g)/ ox, ——Cglpu" ”(£/k)au / 0 o (22)
-C,,p(E? 1K) +0[p(v, / 0,)0% | 9% Jox, (b), |



whereC,, =144, C,, =192 o, =13 o, =10. The equations in terms of the conditional
mean kinetic energk, and dissipation ratg, (splitting Egs. (22)) are as follows:
A[p-T)k,]/dt+a[pA-C)u, k,]/dx, = -pA-E)(u/u}) dU,, /X, - DA-CT)E,
+3lpA-T)(v,, /0,)Ok, 19x | ox, - A-C)(u] DBp/ax,), -k, AW (a),

24
dp@-c)g /ot +o[pA-C)u; &, ]/0x =—C,p@A-C)(E, /k)(u )au 10X (24)

-C,,p(1-C)(E2/k,) +6[/5(1—C)(Vt'u 0,)ok, /axa]/axa - @-°)(?), —£U_W (©).

Two new physical mechanisms appear in Egs. (2€pmparison with Egs. (22). They the
single underlined sink terms caused by transfaomatf reactants into products with the

intensity ,BVV and double underlined terms connected with ttesure field. The later

terms describe mainly effect of the instantaneeastion zone on turbulence of the unburned
gas. This effect is not significant in contrastao effect of similar terms in conditional

averaged equations in terms of the turbulent en&gggnd dissipation raté, in the burned

gas. The point is that transformation of reactamt® products in strongly wrinkled
instantaneous flame is accompanied by significariuiization of products, which is difficult
for quantitative modeling. To avoid the problem @eclude from analysis the conditional

averagedk, — and £, —equations.

We propose to use for turbulence modelling the system of differential equations that include
and the conditional averaged equations in the unburned gas Egs. (24) with omitted double

underlined terms and (instead of conditional averaged k, — and £, —equations) the Favre

averaged Egs. (22) together with the exact expressions for the components of the stress
tensor, EQ. (4).

In this casek and &, , which are necessary for modelling of the turbumresse$u ;)
are described by following algebraic expressions:

k, =[k -k, A-DN/E (@), & =[-£,0-ONIT (b). (25)

The viscosity coefficient, turbulent stresses anaiis-rate in reactants;, ,, uu’) D, S

in products, v, , (u ) S, are described by the following expressions:

l/t,u = C/JRUZ /Eu (a)’ (UIU]) = _Z(Vtu /pu) 1j,u + (Z/S)Eudl] (b)!
S = W2)(au,, /ox; +au;, /0x) (c).
Vip = Cbez 18 (d),  (Uuj), =-2(V,,/ P)S;p + (2/3)Rb5ij (e),
Sip = @W2(ou,, /ox; +au;, /9x) (f),

(26)

whereC, = 009is an empirical coefficient.

Obviously, this compromise approach, which is ainadmodelling of turbulence in the
unburned and burned gases, needs validation:nbtilear in advance how accurately the



Favre averaged Eqs. (22), which is widely usedinmukations of nonisothermic turbulent
flows, describe actual global turbulization in ffremixed flame.

Modelling of the chemical source
A problem of theoretically justified modelireg the mean chemical sourggV = pW is

called the challenge of turbulent premixed comlmunstirhe point is that actual instantaneous
combustion takes place in very small-scale zones ¢tnnot be resolved by the model
moment combustion equations, so we cannot expnessi¢an chemical source using directly
the equations of chemical kinetics. Conceptualiyilsir situation takes place in turbulence
where the dissipation of the turbulent kinetic giyeiakes place small eddies with the sizes of

the Kolmogorov micro-scaley = LRe**. So the mean dissipation rate cannot be

expresses in terms of the molecular viscosity oaefit v. Kolmogorov resolve this
fundamental difficulty assuming the statistical diQuium of small-scale eddies that permits

his to express the dissipation rate in terms oflahge-scale turbulent parameters: u'® /L .

We resolved in the context of the Kolomorov ideasilar difficulty in modelling the
chemical source for more complicated than analgse base when instantaneous flame is not
laminar, but miscroturbulent one. Below we presmmilogous analysis for the case of the
laminar instantaneous flame with zero width. Thiatmematical modetorresponds to the
limiting case when in the known expressions fiar speed and width of the laminar flame

S = ()(/Tch)ll2 (@, o =(x Hch)ll2 (b), (27)

the molecular transfer coefficient and chemical time, tend to zeroy - o, 7, — O, but
their ratio tends to constan{y/r,) — const. In terms of the turbulent Reynolds
Re, = u'L/v (the kinematical viscosity coefficienv = y) and theDamkohler Da=r1, /7,

(7, =L/u’ is the turbulent time) these conditions are agvs:

lim(Da/Re,) =const (a), lim(o, /n)=0 (b), (28)
Da- o Rg - o Da- o Re -

In this case the progress variable is bimocp(t) =ad(c)+ Bp@d-c), wherea = (1-C) and

[ =C are the probabilities of the unburned and burr&mbgp(c) =ad(c)+ pl-c).

The speed and width of the turbulent flame in the case of the bimodal PDF
We assume that the one-dimensional flame travelggaihe x —axis and the flamelet surface
iIs described by the random function=h(y,zt with the spectrurk(k ) In the initial

momentt = Othe flamelet is the surface with= . Qur theoretical estimation of the mean
area(A/ A)) refers to the case of strongly wrinkled surfacemfi\/ A,) >>1, i.e. the mean

area of the flamelet is many times larger thanatfea of the plane flamelet. Our estimation is
as follows:

(AlA) = (+|Onp)"= 0| :3:(|Dh|2j = ([K*F()dk)"”? (29)

The equality 1 is an exact expression for the afethe random surface described by the
equation x=h(y,zt ) the transition 2 is valid as |Oh|*>> 1 due to assumption



(Al A)) >>1; the transition 3 is estimation (averaging of #isolute magnitude of a random

function with zero mathematical expectation is agpnately equal to the square root of its
dispersion; the equality 4 is exact expressionthaf root in terms of the spectrum of the
random surface. Hence the final estimation forattea of the flame surface is as follows:

(A1 A) = ([ K*F (k)dk) ">, (30)

Eq. (5) shows that the small-scale wrinkles witlyéavalues of the wave numbkrgive the
main contribution in the mean area of the flamdase gives (quite similar to well known
result in the turbulence theory where the main roution in the mean dissipation rate gives
small-scale vortexeg = ZVJ-:I(ZE(k)dk, E(k)is the spectrum of turbulence). At the same

1/2

time the main contribution in the flame width ~ (o7)"* = g, give the large scale wrinkled

as the dispersion of the flame surfagg is described by Eq. (31):

ol (t) = (x—X(t))? :J' F(k,t)dk (a), o/(t)=2Dt (D, =u'L) (b). (32)
0

In the case the passive boundary between gagksc=0 and c= 1 (there is no
combustion) the dispersion of the instantaneoud$asairis controlled by the turbulent
diffusion coefficienD,, Eqg. (31b). At the same time the mean area of the passiMacsu
increases exponentially [9]. The physical reasonswth fast increasing of the area is
generation of the small-scale wrinkles of the matesurface in the field of developed
turbulence. In the case of combustion this expoakinicreasing of the flame are(aT\/Ab) is
suppresses by movement of the flame. The reasdhaisthe movement even with the
relatively low speedS, <<u’ smoothes controlling the area small-scale wriskiehich are

caused by small-scale eddies with relatively smladiracteristic velocity fluctuations. In fact
there are two processes: turbulence generates @mtbustion consumes the small-scale
wrinkles, which result some statistically, equililon small-scale structure of the flamelet
surface. We estimate the characteristic titmavhen this equilibrium is reached, invoking the

value of the velocity fluctuation;, of the small-scale eddy that depends on itsd&iz€or the
“5/3” turbulent spectrum, Eq. (39, dependence ofi, on J, is describe by Eq. (32):

E(k) = Cg?Bk™R3 (a), uf = '[E(k)dk = ?2/3562/3 (b), t,=(S, /u')ZZ't (c). (32)
1/6,

The order of the magnitude of, is equal to the time that is necessary for thenélet to
cross such eddy, which has the velocity fluctuatemual to the speed of the flamelet,
u, =S, . The following estimation is presented by Eq. €32where 7, =L/u’" is the
turbulent time. At the same the relatively slowvament of the instantaneous does not
influence on the large scale wrinkles during someagl of time t <t, and the dispersion of
the flamelet surface is described by Eq. {3Isimilar to the turbulent mixture layer. For
estimation oft, we assume that significant influence & on the dispersiow;? takes place
when the linear displacement of the flame is cdumethe self-movingS t, and the transfer
due to turbulent diffusioro, (t, have the same order of the magnitude, Eqa§3and it
gives the estimation of the time presented by Bdp {3



S.t, =[02(t,)]"Y? = (U'Lt,)"? (a) t,=(u'/S.)?r, (b)., (33)

Finally, Egs. (32) and (33®) show the time interval, Eq. (39, when the small-scale
structures of the reaction zone are already gtait equilibrium, while the large-scale ones
are not yet. The latter results increasing widtthefflame, Eq. (38). An assumption that the
equilibrium structures are controlled by large-edairbulence and the spe&l, which is in

fact the only physicochemical characteristic of thigture, results that the flame spedd is
constant. Eq. (34) gives an expression for this constant speedwbalerive below A ~1

is an empirical coefficient). At the same time th@me width increases similar to the
turbulent mixing layer, Eq. (3.

(S./U)PT, <t<(U'S)%7, (@), & =0, = (UL (b),

_ 34
U, =S (A/Ag) = AU'S)" (o),
For deriving Eq. (34) we present the mean area using Eqs. (5) anas(®llows:
AA) =0 /A (@), A =jF(k)dk/J'k2F(k)dk (b), (35)
0 0

where A is the Taylor microscale of the random flame &cefin accordance with general
definition (with precision of a multiplier) of thisnicroscale [10]. The Taylor microscale can
be presented as follows:

A St S
A=f@U, LS ,t) = ==f(~, =&
( L ) 1 |_ l(L ur

):>i= ﬂfsu— = AL At (36)
7L VL s )s L VL

The arrow 1 in Eq. (11) denotes transition from geheresentation to the formula that
follows using the Buckinghaml —theorem of the dimension theory [11]. For transitbwe

put that (K/AO) =const and g, ~ Jt, hence ~+/t. For the transition 3 we take into
account that at strong turbulerfo&' S ) >>1, so we puf,(u'/S_ )= f;(») ~ 1 Using Eq.
(34b), (35a) and the last expression in Eq. (36) results thedta (A/A,) = (u'/S)"?,
which yields the desired expression for the spdethe flame: We notice that Eq. (8%
shows weaker chemistry dependence of the flamedspk ~\/S_L) than of the laminar
flamelet. The reason is that increasing 8f smoothes the small-scale wrinkles that results
decreasing of the aréa/A,) and vice-versa.

The mean chemical source in the cases laminar and microturbulent instantaneous flame

The stated theoretical (in the context of the Kolorets ideas) expression for the turbulent
flame speed , Eq. (x), results the expression lfiersburce presented by Eq. (36a):

PW = A, Jk¥?S |OE| (a), Dal?>>Re’* (b), (37)



were Da, =L, /u, /7, andReg, =u,L,/v,. Eq. (36a) also valid with good accuracy in the
case of actual laminar flame as its width is smgll,~ (0.1-1)mm. Eq. (36b) is the condition
of it that follows from the inequality), <<z, =L, Ref"‘ and Eq. (27b). Appearing in Eq.

(37) of the parameters of the unburned gas is aiedeawith the fact that the instantaneous
flame propagate through reactants and namely thetyal thechemical source .

In [4] we state similar expression for the chermgaurce and corresponding conditions in
the case of the microturbulent instantaneous fldaha in our case as follows:

ﬁVT/ =A2U;D 1/4 |DC| A ur3/481/2)(1/4|_1/4 (A2 ~ 052) (a), (38)
Da3/4 >>1>> Dajlz et3/4 ( )

Eq. (37) are valid for the laboratory low velocitarhe, while Eq. (38) refer to the cases of
high speed gas turbine combustion.

The alternative approach and the TFC combustion model

We developed proposed alternative approach trygrayércome the challenge of theoretically
justified modelling the scalar flux (predominanttpunter-gradient) and the stress tensor
(describing, in particular, abnormal increasinghia premixed flame of velocity fluctuations.
These effects are a gasdynamic nature: they aresewbuby different pressure-driven
acceleration of the heavy unburned and light bdigeeses by the pressure gradient generated
by the flame, which acts in parallel with the tudni diffusion. In fact in the context of the
alternative approach we reformulated the TFC modehe more theoretically justified basis
which both gasdynamic and turbulent mechanismstlagid interaction are contained in the
conditionally averaged equations.

For comparison we remind how this problem was éeat the standard version of the TFC
model implemented in the Ansys Fluect and CFX cotlés presented the scalar flux as a

sum of the turbulent gradieiipi’c”), and gasdymic countergradiefi’c” "), -For closure of

Eqg. (39) we included the gasdynamic component ofltixein the model chemical source and
approximate remaining turbulent components in teoithe turbulent diffusion coefficient
D, as follows:

d(pC) /ot + O Mpuc) = -0 Meu'c") + oW (39)
o)
(p"C"), +(p0"c")
5 ' \'
d(pc)/ ot + O [{puc) = 0 {pD,0c) + p,U,|O¢| (40)

We developed in [3] a gasdynamic model which yidlaslerive for the one-dimensional
algebraic expression for the gasdynamic compon(]pn'tc) This model, which does not
contain any empirical constants permitted to edtne post-processor stage actual scalar

—’" n

flux ol"c" and sourcepW . These predictionsvas validated against known experimental
data in the Bunsen and impinging flames. But otenapt to generalise this gasdynamic
model for the three-dimensional case met somedifies. Furthermore, the post-processor
simulations are not appropriate in commercial coBeveloped alternative approach permits
to simulate all actual parameters directly.



Conclusions

1. We show that known challenge of modelling of slealar flux and stress tensor is not an
inherent in the theory of turbulent premixed comiauns but it appears due to inappropriate
Favre averaging and conditional averaging of thenert equation eliminates this difficulty.

2. We present the alternative system of the undlesgiations, which describes all Reynolds
and Favre averaged paramagnets of the premixed ustiob problem formulated for the
BML combustion mechanism, where requiring modellimknowns are the conditional mean

stresses in the unburngd;u’), and burned(u/u;), gases, and mean chemical soup# .

nn m.n

The components of the scalar fl/c” and stress tenspu/u; do not require modelling.

3. We state the models for turbulence and souige),, (u'u’), and oW . The former is

reformulated in terms of the conditional melanz, andk,,£, standard"k —& thodel. The
latter is based on the theoretical expressiontferftame speetl), deduced in the context of

the Kolmogorov methodology. The results for BML magism is original, for completeness
we present also the expression for the case okiedmmicroturbulent instantaneous flame.
4. Presented equations are comprehensive for ingpltion in a code and simulations.
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