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Abstract 
We develop an alternative approach to the turbulent premixed combustion theory that permits 
to eliminate well known challenge of modelling of predominantly counter-gradient scalar flux 
and the stress tensor, which must describe, in particular, observed in experiments abnormal 
increasing in the premixed flame of the velocity fluctuations. We analyse two combustion 
mechanisms: instantaneous combustion takes place in wrinkled laminar or microturbulent 
flame. The approach is based on derived in the paper conditionally averaged momentum 
equations instead of traditionally used for modelling Favere averaged one. We state not only a 
system of the unclosed equations where requiring modelling unknowns are the conditional 

turbulent stresses in the unburned and burned gases bjiuji uuuu )(,)( ′′′′  and the mean chemical 

source Wρ , but also develop model equations in the terms of  these unknowns. Turbulence in 

model equations is characterized by conditional kinetic energies bu kk ,  and dissipation rates 

bu εε , , the stresses are described bjiuji uuuu )(,)( ′′′′  in the standard gradient form using 

conditional turbulent viscosity coefficients ut ,ν , bt ,ν . We state the model Wρ   using the 

theoretical expression for the turbulent flame speed, which we derive using Kolmogorov type 
assumptions of statistical equilibrium of the small-scale reaction structures and at the same 
time nonequilibrium large-scale ones. The scalar flux and stress tensor do not require special 
modelling as the former is described in terms of the conditional mean velocities uu

r
 and bu

r
, 

which are known from the conditionally averaged momentum equations, and  the latter 

depends additionally on the conditional stresses  bjiuji uuuu )(,)( ′′′′  that are described by the 

turbulence model. This approach was developed in the context of the agreement with Ansys 
with the aim to reformulate presented in Fluent and CFX codes TFC combustion model on a 
more theoretically justified basis, which yields additional potentialities of the model    

 

Introduction 
We analyze turbulent premixed combustion.  The theoretical basis of turbulent premixed 
combustion modelling in the context of the current approach is well known system of the 
Favre averaged unclosed equations of combustion and hydrodynamics, which is as follows:  
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where Favre averaging (weighted by the density ensemble one) mean ρρ /~ aa =  and 
instantaneous aaa ′′+= ~ , notation a  identifies Reynolds (ensemble) averaging. Eq. (1a ) is 

the balance combustion equation where cu ′′′′rρ  and  W
~ρ  are the mean scalar flux and 



 

chemical source. Eq. (1b ) expresses the instantaneous progress variable c in terms of the 
instantaneous density ρ  and the densities uρ  and bρ  of unburned and burned gases. Eq. 

(1c ) is the momentum equation where uu ′′′′ rrρ  is the mean stress tensor with the components 

jiuu ′′′′ρ  in the Cartesian coordinates. Eq. (1d ) is the mass equations. Eqs. (1ba, ) and Eqs. 

(1 ),dc describe correspondingly the combustion and attendant hydrodynamic sub-problems, 

which are coupled due to common density ρ  and velocity u
~r

. Requiring modelling unknowns 

are cu ′′′′rρ  and W
~ρ  in the combustion sub-problem, and uu ′′′′ rrρ  in the hydrodynamic one. 

Our analysis refers to the case of the BML concept [1] where instantaneous combustion takes 
place is strongly wrinkled thin sheet travelling in reactants with the speed of the laminar 
flame LS . In this case modelling of the transfer terms is a challenging problem as  the scalar 

flux cu ′′′′rρ  is predominantly counter-gradient and cannot be approximated by the standard 

gradient expression cDcu t
~∇−=′′′′rρ  ( tD  is the turbulent diffusion coefficient), as well as the 

components of the stress tensor jiuu ′′′′ρ  cannot be expressed accurately in terms of the 

turbulent viscosity coefficient tν . Advanced modelling of the scalar flux and stresses in the 

context of traditional approach is based on the turbulent type approximations of  the unknown 

terms in the  unclosed −′′′′cuiρ  and −′′′′ jiuuρ  equations [2]. The fundamental limitation of such 

method is connected with the fact that the scalar flux and stresses are controlled not only by 
turbulence, but also by gasdynamics (different pressure-driven acceleration of relatively 
heavy reactants and light products), while turbulent type approximations mean the scalar flux 
and stresses are treated as pure turbulent parameters. It shows in frequently used terminology 
such as “countergradient turbulent diffusion of the progress variable” and “turbulent 
generation” in the premixed flame ([2], p. 558), while the nature of the countergradient scalar 
flux and strong increasing of the velocity fluctuations in the flame has predominantly gas 
dynamic nature. Using for modelling of the scalar flux in the impingent flame the turbulent 

type approximations in the unclosed −′′′′cuiρ  equation results in [2]  that  simulations for the 

cases of  a flame close to the wall with slightly increasing pressure across the flame and  a 
free-standing with strong decreasing pressure give quite similar countergradient scalar fluxes, 
Fig. 5 and  6 in [2]. It means that turbulent type approximations do not describe properly the 
gasdynamic effect, which negligible in the close and strong in the free-standing flames. In the 
papers [3-5] we present the scalar flux as a sum of contributions of the gradient turbulent 
diffusion and the countergradient gasdynamic effect. Application of this model to the 
impingent flame results that in the closely set flame the scalar flux is gradient, while in the 
free-standing one the gasdynamic effect prevails in the most part of the flame and the scalar 
flux is counter-gradient except the vicinity of  the front edge of the flame, Figs. 3 in [5], p. 85.   
The statement of this work is that developed here alternative approach makes unnecessary any 
special theories or models (including our “turbulent-gasdynamic” one [3]) for prediction of 
the scalar flux and stress tensor as in the context of the conditionally averaged equations they 
do not require modelling. The reason is that in the case of thin instantaneous flame the scalar 
flux and components of the stress tensor are described by  the known expressions 
 

),)(~1(~
ub uucccu
rrrr −−=′′′′ ρρ                                                                                                                          (3) 
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where bu uu
rrr

,  and  bjiuji uuuu )(,)( ′′′′  are  conditional averaged  velocities and Reynolds stresses 

in the unburned and burns gases. We state below the unclosed conditionally averaged 



 

equations of mass and momentum where requiring modelling are only the conditional mean 

stresses bjiuji uuuu )(,)( ′′′′  and chemical source WW
~ρρ = . For application we state model 

conditionally averaged equations of the "" εκ −  turbulence model for approximation of the 
conditional mean stresses. We also present a Kolmogorov’s type  analysis, which is based on 
an assumption of  the statistical equilibrium small-scale structures of wrinkled by turbulence 

instantaneous flame, that yields a theoretical expression for the chemical source W
~ρ . The 

crucial point that permitted to state proposed alternative approach is deduced below 
conditionally averaged momentum equations, which in contrast to known from the literature 
ones [6-8] do not contain requiring modelling surface averaged velocities and  pressure terms.   
 
The conditionally averaged mass equations 
In the premixed flame takes place instantaneous transformation due to combustion of the 
conditional mean parameter bubuuu upup

rr
,,,, ρρ ⇒ . The intensity of this transformation, the 

chemical source, is equal to the mass flow rate of the unburned gas through the instantaneous 

flame is equal to Σ= Lu SW ρρ ~
, where the flame surface density Σ  equal to  the mean flame 

area per unit volume. To avoid invoking the tool of the generalized function (at first glance 
inevitable due to assumption of zero width of instantaneous flame) we directly split up each 
of these Favre averaged equations into two conditionally averaged ones using obvious identity 
 

cacaPaPaa bbuubbbuuu ρρρρρ +−=+= )1( ,                                                                        (5)  

 
To deduce the conditionally averaged continuity equations we transform Eq. (1d) using Eq. 
(5). We put in it  1=a  and ua

r= . It results the following equation:  
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where the expressions  in the braces u{}  and  b{}  refer to reactants and products.  We can 

easy to check that the expression in the second braces are equal to Wb

~
{} ρ= . (For this we 

must eliminate u
~r

 from Eq. (1a) using Eq. (3) and the obvious expressions:  
 

 ),(~ accc bρρρ ==    ).(~)~1(
~

bcucuu bu

rrr +−=                                                                        (7) 
 

 Then using Eq. (6) gives Wu

~
{} ρ−= , i.e. the conditional mass equations are as follows: 
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The conditionally averaged mass equations 
For deriving the conditional averaged momentum equations we transform similar Eq. (1c) and 
present it as a sum of two groups of the terms, which contain conditional averaged parameters 
referring only to reactants or products. For this we insert in Eq. (1c) the expressions yielded 
by Eq. (5) with ua

r=  and  uua
rr= . It results the following equation  
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 where  bu uuuu )(,)(
rrrr ′′′′  and bu pp ,   are conditionally averaged turbulent stresses and  

pressures. Splitting of Eq. (9) yields the following conditional momentum equations:  
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where  uF
r

 and bF
r

 are equal opposite forces due to impulse exchange between reactants and 

products caused by combustion.. These volume forces do not appear in the Eq. (1c) as 

0=+ bu FF
rr

. It is obvious that Eq. (1c) is a sum of Eqs. (10a) and (10b).  

To find uF
r

.and  bF
r

 we attract the equation of the momentum conservation on the boundary 

that divides the unburned gas with uu pu ,
r

 and bb pu ,
r

, which is as follows: 
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where  cp ∇  is the pressure gradient generated by combustion, which yields transformation  

bu uu
rr

⇒ . We represent RHS of Eq. (1c) as follows: 
  

WuWupWuuppp ububc ρρρ rrrr o −+−∇=−+∇+−∇=∇− ~
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where the expressions in the braces is equal zero in accordance with Eq. (11) and cppp −=o . 

and splitting Eq. (12) we have as follows: 
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where ucuu ppp ,−=o  and . bcbb ppp ,−=

o
. Rqs. (13a) and (13b) present correspondingly the 

RHSs of  Eqs. (10a),  and (10b), Eqs. (13c) are expression for uF
r

and  bF
r

 in Eqs. (10). So 

Eqs. (10) and (13) yields directly the following conditional averaged momentum equations: 
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In Eqs. (14) o

up  and  o

bp  are the conditional mean pressures in the unburned and burned 

gasses in the case of combustion. We omit the index""o below.                                          
 
 
 
 



 

The system of the unclosed equation of turbulent premixed combustion  
The system of the unclosed equations in terms of the conditionally averaged  uu pu ,

r
, bb pu ,
r

. 

and Reynolds averaged c  includes two scalar continuity equations Eqs. (8), two vector 
momentum equations Eqs. (14) (i.e. 6 scalar equations) and one scalar equation Eq. (15): 
 

|| buLubu uuSpp
rr −=− ρ                                                                                                            (15) 

 
Eq. (15) is the condition of  the momentum conservation on the boundary that divides gases  
with conditional mean parameters uu pu ,

r
 and  bb pu ,

r
. Known from the literature analogous 

equation connects the surface averaged velocities suu
r

 and sbu
r

, Eq. (13) in [7], is as follows:  

 

Σ−=Σ− sbsbsusu npWunpWu )(
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To gain a better insight into our consideration we first transform known  Eq. (16). We present 
the pressure terms as follows: 
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                                                      (17) 

 

where the correlations npsu ′′ r
 and npsb ′′ r  are in general case nonzero as the pressures and unit 

vector n
r

 are defined at the same adjacent surfaces. But if to ignore these correlations Eq. (16) 

reduces to the Eq. (18a) and then remembering that Σ= Lu SW ρρ ~
   to Eq. (18b): 
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It is evident from Eqs. (14) that  bu uun

rrr −~  and ||/)( bubu uuuun
rrrrr −−= . Installing the latter 

in Eq. (14b) we have the following impulse conservation law : 
 

|).| sbsuLusbsu uuSpp
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In our case there is no correlation between  n

r
 and bu pp ,  as the vector n

r
 is defined on the 

surface, while the pressures  bu pp ,  are defined in the unburned and burned gases. Hence  

Σ−⋅=Σ−⋅ npuWnpuW bbuu

rrrr ~~ ρρ ,                                                                                                        (20) 
 
which after similar presented above manipulations reduces to Eq. (15).  
      The unknown terms in the system Eqs. (8), (14) and (15), which require modelling, are the 

conditional Reynolds stresses ujiuji uuuu )(,)( ′′′′  and the chemical sourceW
~ρ . Others 3 scalar 

bu ppc ,,(  and two vectors ( ),( bu uu
rr

 unknowns are described by 3 scalar (Eqs. (8) and (15)  

and 2 vector (Eqs. (14) equations of the system. All others Reynolds and Favre averaged 
variables of the problem can be expressed in terms of defined by the system variables 

bubu uuppc
rr

,,,, . But we think that more convenient for practical applications (especially 

keeping in mind an opportunity of implementation in the commercial code) to state a system 
that described all conditionally, Reynolds and Favre averaged variables of the problem 
directly, i.e. avoiding their post-processor simulations. 



 

This system is as follows: 
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We split the system into two coupled subsystems Α  and Β , which  describe correspondingly 
the combustion and hydrodynamic sub-problems. Eq. (21a) is the traditional balance 
combustion equation; Eq. (21b) expresses ρ  in terms of  c  and  ;~c  Eq. (21c) expresses c  in 
terms of  ;~c  Rq. (21d) express the scalar flux in terms of described by the system conditional 

mean velocities, i.e. cu ′′′′rρ  does not need modelling. Eq. (21e) is the global continuity 
equation, Eq. (21f) expresses the Favere averaged velocity in terms of conditional mean ones; 
Eqs. (21g) and (21h) are correspondingly conditionally averaged momentum  equations for 
the burned and unburned gases,  Eq. (21i) express the impulse conservation on the boundary 
that divides the unburned and burned gases; Eq. (21j) is the global impulse equation, Eq. 
(21k) describes the components of the stress tensor that appear in Eq. (21j), i.e. the stress 
tensor, similar to the scalar flux,  do not require modeling. The LHSs in Eqs. (21g) and (21h) 
are modified in comparison with Eqs. (14a) and (14b) using obvious relations ccb

~ρρ =  and 

).~1()1( ccu −=− ρρ  In the system Eqs. (21)  we keep traditional in the premixed combustion 

theory Favre averaged combustion equation in terms of c~ ,  and the global continuity and 
momentum equations. The only unknowns in the system that require modelling are 

conditional averaged turbulent stresses bu uuuu )(,)( ′′′′ rrrr
 and mean chemical source WW

~ρρ = , 

while jibubu uucuppuuucc ′′′′′′′′ ρρρ ,,,,,,
~

,,~,
rr

 are known as they described by Eqs. (21).  

     
 
Modelling of the conditional Reynolds stresses  
We start from the Favre averaged equations of the standard "~~

" ε−k  turbulence model: 
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where 0.1,3.1,92.1,44.1 21 ==== εεε σσ kCC . The equations in terms of the conditional 

mean kinetic energy uk  and dissipation rate uε  (splitting Eqs. (22))  are as follows: 

 
[ ]

[ ]













−−−∂∂∂−∂+−−

∂∂′′−−=∂−∂+∂−∂

−∂∂⋅′−−∂∂∂−∂+

−−∂∂′′−−=∂−∂+∂−∂

).(
~

)(?)1(//)/)(~1()/)(~1(

/))(/)(~1(/])~1([/])~1([

),(
~

)/)(1(//)/)(~1(

)~1(/))(~1(/])~1([/])~1([

,
2

2

,1,

,

,,

cWcxxkvckcC

xuuukcCxuctc

aWkxpucxxkvc

cxuuucxkuctkc

uuukutuu

juiujiuuiuuiu

uuiiiiukut

ujuiujiuuu

ρεσρερ

ερερερ

ρσρ

ερρρρ

ααε

ε

αα

      (24) 

Two new physical mechanisms appear in Eqs. (24) in comparison with Eqs. (22). They the 
single underlined sink  terms caused by transformation of reactants into products with the 

intensity W
~ρ ,  and double underlined terms connected with the pressure field. The later 

terms describe mainly effect of the instantaneous reaction zone on turbulence of the unburned 
gas. This effect is not significant in contrast to an effect of similar terms in conditional 
averaged equations in terms of the turbulent energy bk  and dissipation rate bε  in the burned 

gas. The point is that transformation of reactants into products in strongly wrinkled 
instantaneous flame is accompanied by significant turbulization of products, which is difficult 
for quantitative modeling.  To avoid the problem we exclude from analysis the conditional 
averaged  −bk  and −bε equations. 

 We propose to use for turbulence modelling the system of differential equations that include 
and the conditional averaged equations in the unburned gas Eqs. (24) with omitted double 
underlined terms  and (instead of conditional averaged −bk  and −bε equations)  the Favre 

averaged Eqs. (22) together with the exact expressions for the components of the stress 
tensor, Eq. (4). 

  In this case bk  and bε , which are necessary for modelling of  the turbulent stresses bjiuu )( ′′ , 

are described by following algebraic expressions:  
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The viscosity coefficient, turbulent stresses and strain-rate in reactants, ut ,ν , 
ujiuu )( ′′ , uijS , , and 

in products,  bt ,ν , 
bjiuu )( ′′ , bijS , ,  are described by the following expressions: 
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where 09.0=µC  is an empirical coefficient. 

Obviously, this compromise approach, which is aimed at modelling of turbulence in the 
unburned and burned gases, needs validation: it is not clear in advance how accurately the 



 

Favre averaged Eqs. (22), which is widely used in simulations of nonisothermic turbulent 
flows,  describe actual global turbulization in the premixed flame.  

 
 
Modelling of the chemical source 
     A problem of theoretically justified modeling of the mean chemical source WW

~ρρ =  is 
called the challenge of turbulent premixed combustion. The point is that actual instantaneous 
combustion takes place in very small-scale zones that cannot be resolved by the model 
moment combustion equations, so we cannot express the mean chemical source using directly 
the equations of chemical kinetics. Conceptually similar situation takes place in turbulence 
where the dissipation of the turbulent kinetic energy takes place small eddies with the sizes of 
the Kolmogorov micro-scale 4/3Re−= tLη .  So the mean dissipation rate ε  cannot be 

expresses in terms of the molecular viscosity coefficient ν . Kolmogorov resolve this 
fundamental difficulty assuming the statistical equilibrium of small-scale eddies that permits 
his to express the dissipation rate in terms of the large-scale turbulent parameters Lu /3′≈ε . 
We resolved in the context of the Kolomorov ideas similar difficulty  in modelling the 
chemical source for more complicated than analyse here case when instantaneous flame is not 
laminar, but miscroturbulent one. Below we present analogous analysis for the case of the 
laminar instantaneous flame with zero width. This mathematical model corresponds to the 
limiting case when  in the known  expressions for the speed and width of the laminar flame  
 

),()(),()/( 2/12/1 baS chLchL τχδτχ ⋅≈≈                                                                           (27) 

 
the molecular transfer coefficient χ  and chemical time chτ  tend to zero, 0→χ , 0→chτ , but 

their ratio tends to constant constch →)/( τχ . In terms of the turbulent Reynolds 

ν/Re Lut ′= (the kinematical viscosity coefficient  χν ≈ ) and the Damköhler chtDa ττ /=  

( uLt ′= /τ  is the turbulent time) these conditions are as follows:   
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In this case the progress variable is bimodal: ( ) )1()( cpccp −+= βαδ , where )1( c−=α  and 

c=β  are the probabilities of the unburned and burned gases ( ) )1()( cpccp −+= βαδ .  
 
The speed and width of the turbulent flame in the case of the bimodal PDF 
We assume that the one-dimensional flame travels along the −x axis and the flamelet surface 
is described by the random function ),,( tzyhx =  with the spectrum )(kF . In the initial 
moment 0=t  the flamelet is the surface with 0=x .  Our theoretical estimation of the mean 
area )/( 0AA  refers to the case of strongly wrinkled surface when 1)/( 0 >>AA , i.e. the mean 

area of the flamelet is many times larger than the area of the plane flamelet. Our estimation is 
as follows:   
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The equality 1 is an exact expression for the area of the random surface described by the 
equation ),,( tzyhx = ; the transition 2 is valid as  1|| 2 >>∇h   due to assumption  



 

1)/( 0 >>AA ; the transition 3  is estimation (averaging of the absolute magnitude of a random 

function with zero mathematical expectation is approximately equal to the square root  of  its 
dispersion; the equality 4 is exact expression  of this root in terms of the spectrum of the 
random surface. Hence the final estimation for the area of the flame surface is as follows: 
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≈ .                                                                                              (30)  

Eq. (5) shows that the small-scale wrinkles with large values of the wave number k  give the 
main contribution in the mean area of the  flame surface gives (quite similar to well known 
result in the turbulence theory where the main contribution in the mean dissipation rate gives 

small-scale vortexes ∫
∞

=
0

2 )(2 dkkEkνε , )(kE is the spectrum of turbulence). At the same 

time the main contribution in the flame width ttt σσδ =2/12 )(~  give the large scale wrinkled 

as the dispersion of the flame surface 2
tσ   is described by Eq. (31a ):  
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σ                                 (31)                         

     In the case the passive boundary between gases with 0=c  and  1=c  (there is no 
combustion) the dispersion of the instantaneous surface is controlled by the turbulent 
diffusion coefficient tD , Eq. (31b ). At the same time the mean area of the passive surface 

increases exponentially [9]. The physical reason of such fast increasing of the area is 
generation of the small-scale wrinkles of the material surface in the field of developed 
turbulence. In the case of combustion this exponential increasing of the flame area )/( 0AA  is 

suppresses by movement of the flame. The reason is that the movement even with the 
relatively low speed uSL ′<<   smoothes controlling the area small-scale wrinkles, which are 
caused by small-scale eddies with relatively small characteristic velocity fluctuations. In fact 
there are two processes: turbulence generates and combustion consumes the small-scale 
wrinkles, which result some statistically, equilibrium small-scale structure of the flamelet 
surface. We estimate the characteristic time  1t  when this equilibrium is reached, invoking the 

value of the velocity fluctuation eu′  of the small-scale eddy that depends on its sizeeδ . For the 

“5/3” turbulent spectrum, Eq. (32a ), dependence of  eu′  on eδ  is describe by Eq. (32b ): 
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The order of the magnitude of  1t   is equal to the time that is necessary for the flamelet to 
cross such eddy, which has the velocity fluctuation equal to the speed of the flamelet, 

Le Su ≈′ . The following estimation is presented by Eq. (32c ), where uLt ′= /τ  is the 

turbulent time.  At the same the relatively slow movement of the instantaneous does not 
influence on the large scale wrinkles during some period of time  2tt <  and the dispersion of 
the flamelet surface is described by Eq. (31b ) similar to the turbulent mixture layer. For 
estimation of 2t  we assume that significant influence of  LS  on the dispersion 2

tσ  takes place 

when the linear displacement of the  flame is caused by the self-moving 2tSL  and the transfer 

due to turbulent diffusion )( 2ttσ  have  the same order of the magnitude, Eq. (33a ), and it 

gives the estimation of the time presented by Eq.(33b ):   
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2 bSutaLtuttS tLtL τσ ′≈′≈≈ ,                                    (33)          

  
Finally,  Eqs. (32c ) and  (33b )  show the time interval, Eq. (34a ),   when the small-scale 
structures of the reaction zone are already statistically equilibrium, while the large-scale ones 
are not yet. The latter results increasing width of the flame, Eq. (34b ). An assumption that the 
equilibrium structures are controlled by large-scale turbulence and the speed LS , which is in 

fact the only physicochemical characteristic of the mixture, results that the flame speed tU  is 

constant.   Eq. (34c ) gives an expression for this constant speed that we derive below ( 1~1A  
is an empirical coefficient). At the same time the flame width increases similar to the 
turbulent mixing layer,  Eq. (34c ). 
 

),()()/(

),()(),()/()/(
2/1

10

2/122

cSuASU

bLtuaSutuS

LLt

tttLtL

′=ΑΑ=

′≈≈′<<′ σδττ
                                                  (34)                        

 
For deriving Eq. (34c )  we present the mean area using Eqs. (5) and (6) as follows:  
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where  λ  is the Taylor microscale of  the random flame surface in accordance with general 
definition (with precision of a multiplier) of this  microscale [10]. The Taylor microscale  can 
be presented as follows: 
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The arrow 1 in Eq. (11) denotes transition from general presentation to the formula that 
follows using the Buckingham −Π theorem of the dimension theory [11]. For transition 2 we 

put that  const=ΑΑ )/( 0  and tt ~σ , hence t~λ . For the transition 3 we take into 

account that at strong turbulence 1)/( >>′ LSu , so we put 1~)()/( 33 ∞≈′ fSuf L . Using Eq. 

(34b ), (35a ) and the last expression in Eq. (36) results the formula 2/1
0 )/()/( LSu′≈ΑΑ , 

which yields the desired expression for the speed of the flame:  We notice that Eq. (34c ) 

shows weaker chemistry dependence of the flame speed  ( Lt SU ~ ) than of the laminar 

flamelet. The reason is that increasing of  LS   smoothes the small-scale wrinkles that results 

decreasing of the area )/( 0ΑΑ  and vice-versa. 

The mean chemical source in the cases laminar and microturbulent instantaneous flame     

The stated theoretical (in the context of the Kolmogorv’s ideas) expression for the turbulent 
flame speed , Eq. (x), results the expression for  the source presented by Eq. (36a): 
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1 bDaacSkW utuLu >>∇Α=ρ                                                                     (37)   



 

were chuuu uLDa τ// ′=  and uuuut Lu ν/Re , ′= . Eq. (36a) also valid with good accuracy in the 

case of actual laminar flame as its width is small, mmL )11.0(~ −δ . Eq. (36b) is the condition 

of it that follows from the inequality 4/3
,Re−=<< utuuL Lηδ  and Eq. (27b). Appearing in Eq. 

(37) of the parameters of the unburned gas is connected with the fact that the instantaneous 
flame propagate through reactants and namely they control  the chemical source .   

In [4] we state similar expression for  the chemical source and  corresponding conditions in 
the case of  the microturbulent instantaneous flame  that in our case  as follows: 

).(Re1

),()52.0(|~|
~

4/3
,

2/34/3

2
4/14/12/14/3

2
4/1

2

bDaDa

aLSucDauW

utuu

uuLuuu

−>>>>

≈Α′Α=∇′Α= χρ
                                                 (38)   

Eq. (37) are valid for the laboratory low velocity flame, while Eq. (38) refer to the cases of 
high speed gas turbine combustion.   

The alternative approach and the TFC combustion model 
We developed proposed alternative approach trying to overcome the challenge of theoretically 
justified modelling the scalar flux (predominantly counter-gradient) and the stress tensor 
(describing, in particular, abnormal  increasing in the premixed flame of velocity fluctuations. 
These effects are a gasdynamic nature: they are coursed by different pressure-driven 
acceleration of  the heavy unburned and light burned gases by the pressure gradient generated 
by the flame, which acts in parallel with the turbulent diffusion.  In fact in the context of the 
alternative approach we reformulated the TFC model on the more theoretically justified basis 
which both gasdynamic and turbulent mechanisms and their interaction are contained  in the 
conditionally averaged equations.  
For comparison we remind how this problem was treated in the standard version of the TFC 
model implemented in the Ansys Fluect and CFX codes. We presented the scalar flux as a 

sum of the turbulent gradient tcu )( ′′′′rρ  and gasdymic countergradient gcu )( ′′′′rρ .For closure of 

Eq. (39) we included the gasdynamic component of the flux in the model chemical source and 
approximate remaining turbulent components in terms of the turbulent diffusion coefficient 

tD  as follows:  
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We developed in [3] a gasdynamic model which yields to derive for the one-dimensional 

algebraic expression for  the gasdynamic component gcu )( ′′′′rρ . This model, which does not 

contain any empirical constants permitted to estimate at post-processor stage  actual scalar 

flux cu ′′′′rρ  and source W
~ρ .  These predictions was validated against known experimental 

data in the Bunsen and impinging flames. But our attempt to generalise  this gasdynamic 
model for the three-dimensional  case met some difficulties. Furthermore, the post-processor 
simulations are not appropriate in commercial codes. Developed alternative approach permits 
to simulate all actual parameters directly.  



 

 
 
Conclusions 
1. We show that known challenge of modelling of the scalar flux and stress tensor is not an 
inherent in the theory of turbulent premixed combustion, but it appears due to inappropriate 
Favre averaging and conditional averaging of the moment equation eliminates this difficulty.      
2. We present the alternative system of the unclosed equations, which describes all Reynolds 
and Favre averaged paramagnets of the premixed combustion problem formulated for the 
BML combustion mechanism, where requiring modelling unknowns are the conditional mean 

stresses in the unburned ujiuu )( ′′ and burned bjiuu )( ′′  gases, and  mean chemical source Wρ . 

The components of the scalar flux cui ′′′′ρ   and stress tensor jiuu ′′′′ρ   do not require modelling.  

3. We state the models for turbulence and source. ujiuu )( ′′ , bjiuu )( ′′  and  Wρ . The former is 

reformulated in terms of the conditional mean uuk ε,  and bbk ε,  standard  "" ε−k model. The 

latter is based on the theoretical expression for the flame speed tU  deduced in the context of 

the Kolmogorov methodology. The results for BML mechanism is original, for completeness 
we present also the expression for the case of wrinkled microturbulent instantaneous flame.  
4. Presented equations are comprehensive for implementation in a code and simulations.  
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