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Abstract
The scalar dissipation rate is a key quantity in turbulent combustion modelling, in particular
for Conditional Moment Closure (CMC). Within the CMC framework, its conditional average
at a particular value of mixture fraction is of special interest. The present study examines the
deterministic version of Multiple Mapping Closure (MMC) toevaluate the conditionally filtered
scalar dissipation rate in the filtered CMC equations in the context of Large Eddy Simulation
(LES).
The objectives of the present investigation are (i) to use MMC to model the conditionally filtered
scalar dissipation rate needed in LES-CMC and (ii) to determine if MMC is a viable option in
the proposed framework. The paper presents our first resultsand focuses on the MMC equation,
the role of each term in the MMC governing equation and the submodels needed.
One major scalar is selected, mixture fraction. The MMC transport equation is implemented in
a LES code coupled with CMC to simulate a lifted jet flame in a vitiated coflow. At this initial
stage of the present MMC study, it is useful to separate the MMC results and investigate the
MMC operation and modelling alone before solving LES, CMC and MMC together. Thus, the
MMC equation is solved starting from frozen flow, mixing and temperature fields. Discussion
is focused on the models of the MMC unclosed terms and their impact on the prediction of the
mapping function and the conditionally filtered scalar dissipation rate. The issue related to low
levels of predicted subgrid variance in MMC compared to whatis predicted in the LES solver
is investigated.

Introduction
The scalar dissipation rate is a key quantity in turbulent combustion modelling, in particular
for flamelet, Conditional Moment Closure (CMC) and Probability Density Function (PDF) ap-
proaches [1]. The scalar dissipation rate,N , represents the rate of mixing at the molecular level
and is proportional to the mean square gradient of the scalar, Z, such asN ≡ D ∇Z ·∇Z, where
D is the molecular diffusivity ofZ. Within the CMC framework, its conditional average at a par-
ticular value,η, of mixture fraction,Z is of special interest with〈N |η〉 = 〈D∇Z · ∇Z|Z = η〉.
The angular brackets denote a conditional average over an ensemble of realizations of the flow,
subject to the condition to the right of the vertical bar. Accurate modelling of the conditional
scalar dissipation rate is crucial, as it appears in both theconditional species transport and
temperature equations. However, evaluation of〈N |η〉 is not straightforward. Further, CMC
requires solution of the transport equations for the conditional averages to be consistent with
that of the PDF transport equation [2]. When a presumed shapePDF is included, this condition
can only be satisfied through the modelling of the conditional scalar dissipation rate derived
from the PDF transport equation. Consequently, in cases of inhomogeneous turbulence, homo-
geneous mixing models do not provide closure for the conditional scalar dissipation rate that



preserves consistency with the inhomogeneous PDF transport equation. Two of the most com-
monly used models in CMC are the presumedβ-PDF model of Girimaji [3] and Amplitude
Mapping Closure (AMC) [4]. Both models are derived assuminghomogeneous turbulence.
Recently, Milford and Devaud [5] used a new formulation based on the transport equation of
the mixture fraction PDF with different submodels for the conditional velocity in the case of
high pressure autoignition. Predictions of ignition delaywere significantly affected by the new
inhomogeneous mixing formulation and in particular, the model for the conditional velocity
was critical. These past simulations were carried out usingReynolds Averaged Navier Stokes
(RANS) and very little has been investigated in the context of Large Eddy Simulation (LES).
CMC has been used in LES only recently [6, 7, 8] and the AMC model is commonly used to
determine the conditionally filtered scalar dissipation rate. In the present work, a different stra-
tegy is adopted to model the conditionally filtered scalar dissipation rate following promising
research developments in Multiple Mapping Closure (MMC) [9, 10]. MMC methods have been
developed using the concept of mapping closure [11]. In the simplest formulation, the mixture
fraction can be selected as the only major species and MMC becomes equivalent to singly con-
ditioned CMC. The advantage of MMC is that homogeneous turbulence is not assumed in the
mapping process and as result, may be considered to be a generalization of AMC for inhomo-
geneous cases. Further, the conditionally filtered scalar dissipation rate is in closed form and no
complex integration is needed as in the previous inhomogeneous turbulent mixing model [5].

The objectives of the present investigation are (i) to use MMC to model the conditionally
filtered scalar dissipation used in CMC in LES and (ii) to determine if MMC is a viable option
in the proposed framework. The paper presents our first results and focuses on the MMC im-
plementation, the role of each term in the MMC governing equation and the submodels needed.
Vogiatzaki et al.[9, 10] implemented MMC with a single majorscalar, mixture fraction and
calculated the unconditional and conditional scalar dissipation rate for simple jet flames. In
the present work, same submodels are used with a different implementation in the context of
LES where the calculations are three dimensional and transient by nature. To the authors’ best
knowledge, this is the first time the deterministic version of MMC is implemented in LES. The
deterministic form is preferred in the present work in orderto keep the additional computational
cost low as the CMC equations are also solved for turbulent combustion. Further, the lifted hy-
drogen Cabra flame [12] is used as a test case with more challenging modelling aspects related
to flame stabilization.

In the following sections, MMC is described including the modelling assumption used. The
computational details of LES-CMC-MMC are shown. Results and discussion are focused on
MMC submodels and their impact on the mapping function profiles in the computational do-
main.

MMC
A detailed derivation of MMC in both deterministic and stochastic forms can be found in the pa-
per by Klimenko and Pope [11]. MMC is not straightforward andcan become complex quickly
depending on the number of major species or reference variables selected, the submodels (for
example, for the velocity) and the equation formulation (deterministic versus stochastic). MMC
is built upon the idea that all turbulent fluctuations can be divided into major and minor groups
and turbulent fluctuations of minor scalars are correlated with those of the major scalars. A
reference variable is assigned to each major scalar and the number of major scalars determines
the dimensionality of the model. In the present work, keeping in mind the objective of finding
the conditionally filtered scalar dissipation rate, one major scalar is selected, the conditioning
variable used in CMC, namely mixture fraction. In other words, it is assumed that the fluctu-



ations of all other quantities that are called ’minor’ in MMC, such as temperature and species
concentrations are correlated to those of the major variable, mixture fraction. This is the same
idea behind the singly conditioning CMC. The MMC equations solve for mapping functions
which map between the reference space and the composition space following the same princi-
ple of mapping closure methods. The equations are derived for inhomogeneous turbulence and
do not depend on the shape of the reference PDF. Further, the composition joint PDF can be
determined directly from the solved mapping functions.

In the current work, the reference variable is noted asξ. Xz is the mapping function solved
by the MMC equation andXz maps betweenξ andZ, mixture fraction. The MMC equation for
the spatial and temporal evolution ofXz is given by [11]

∂Xz

∂t
+ U∇Xz + A

∂Xz

∂ξ
− B

∂2Xz

∂ξ2
= 0, (1)

whereU, A andB are the coefficients of velocity, drift and diffusion, respectively, and need
to be closed. Closure of these terms is obtained through consistency with the reference PDF
transport equation. A Gaussian form with zero mean and unityvariance is commonly used for
the reference PDF,Pξ, and satisfies the following transport equation

∇UρPξ +
∂AρPξ

∂ξ
+

∂2BρPξ

∂ξ2
= 0, (2)

whereρ is the filtered density. Please note that the time and spatialderivatives are neglected
in Eq. 2 due to time and space invariance of the reference PDF.Further, the reference PDF
does not have to be Gaussian and the coefficients can be determined in principle for any form
of reference PDF. However, the choice of the reference PDF has an impact on the resulting
complexity for the expressions ofU andA and influences the implementation of MMC.

All MMC coefficients must satisfy Eq. 2. However, it does not mean that they are unique
[11]. Their expressions depend on the assumptions made for the velocity andB. For our
first MMC implementation, models suggested by Klimenko and Pope [11] and implemented in
RANS by Vogiatzaki et al. [9, 10] are used in the present work.For clarity, the MMC velocity
denotesU, the velocity vector, in Eq. 1, whereas the term ’conditional velocity’ is kept for the
velocity in the CMC equations. Both are conditional velocities but are not conditioned on the
same variable. A linear model is used forU given by

U = U(ξ,x, t) = U
(0) + U

(1)ξ, (3)

U
(0) corresponds to the filtered velocity vector solved in LES, such as

U
(0) = Ũ. (4)

U
(1) is the velocity gradient and is determined by the expression

U
(1)〈ξXz〉

∗ = ũ′Z ′, (5)

whereZ is the mixture fraction modelled by the mapping function such asZ=〈Xz〉
∗. In the

context of LES, the terms with overtilde are filtered/resolved quantities and terms in angular
brackets with a star are averages obtained using the reference PDF. The drift coefficient is
determined by

A = −
∂B

∂ξ
+ Bξ +

1

ρ
∇ρU(1). (6)



B is related to the unconditional scalar dissipation rate and is modelled as

B〈
∂Xz

∂ξ

∂Xz

∂ξ
〉∗ = Ñ. (7)

Equations 3-5 imply thatB can be treated as an independent coefficient [9]. This is common
practice as shown in [11]. Equation 7 requires knowledge ofÑ obtained from LES which
includes contribution of resolved and subgrid gradients and is calculated as

Ñ =

(
ν

Sc
+

νt

Sct

)
∂Z̃

∂xk

∂Z̃

∂xk

, (8)

whereν is the molecular kinematic viscosity,νt the turbulent viscosity,Sc is the molecular
Schmidt number andSct the turbulent Schmidt number. The conditionally filtered scalar dis-
sipation rate, needed in CMC, does not appear explicitly in the MMC formulation. It can be
retrieved through a transformation from the reference space,ξ, to the mixture fraction space,η,
such that [9, 10]

Ñ |η ≈ B

(
∂Xz

∂ξ

)2

. (9)

Experimental details
The selected experimental case is a turbulent lifted jet flame of hydrogen diluted with nitrogen
issuing into a wide co-flow of vitiated air [12]. As shown in Fig. 1, the burner consists of a fuel
jet nozzle and a surrounding perforated plate disk. The jet nozzle inner diameter,d, is 4.57 mm
and the wall thickness is0.89 mm. The outer disk has a diameter of210 mm with an 87%
blockage and consists of 2200 holes with a diameter of1.58 mm. The central jet extends70 mm
above the surface of the perforated disk. At this downstreamlocation the co-flow properties are
uniform. The fuel stream consists of hydrogen diluted with nitrogen. The vitiated air consists
of the products of a lean premixed hydrogen/air flame. The stoichiometric mixture fraction is
0.474. The experimental conditions used in the present simulations are summarized in Table 1.

Figure 1: Experimental set-up taken from http://www.me.berkeley.edu/cal/vcb/data/VCHNData



Table 1: Experimental conditions

co-flow fuel jet

Diameter (mm) 4.57 210

Velocity (m/s) 107 3.5

Temperature (K) 1045 305

XH2
(molar fraction) 0.0005 0.2537

XO2
(molar fraction) 0.1474 0.0021

XN2
(molar fraction) 0.7534 0.7427

XH2O (molar fraction) 0.0989 0.0015

Computational details for LES
For brevity, the governing equations and models are not presented in full detail and further
information can be found in [8]. The LES with the first-order CMC approach and detailed
mechanism including 9 species and 19 reversible reactions [13], is used for the flow calculations.
The flow field information is calculated by the LES code [8]. The standard Smagorinsky model
is used to calculate the sub-grid scale stress tensor with a model constant,C, equal to 0.1. Equal
diffusivities, constant Schmidt number (Sc = Sct = 0.7) and unity Lewis number are applied.
No additional equation is solved for the subgrid mixture fraction variance. A gradient type
model is considered such that

Z̃ ′′2 = C∆2 ∂Z̃

∂xk

∂Z̃

∂xk

, (10)

where∆ is the filter width andxk corresponds to distance in each direction of the selected co-
ordinate system.

The LES computational domain extends 30d downstream from the jet inlet (approximately
137mm) in the axial direction and 20d (91.4mm) radially. The corresponding grid contains 192
× 48× 48 cells. The LES grid is stretched smoothly towards the co-flow in the radial direction
and is expanded smoothly in the axial direction. At the inletof the domain, Dirichlet boundary
conditions are used imposing the velocity and mixture fraction. At the outlet, Neumann boun-
dary conditions are applied for all quantities except for pressure which is imposed (atmospheric
pressure). The implementation is in parallel with 4 blocks in the axial direction.

CMC formulation in LES
The conditionally filtered CMC equations are given by

∂Qα

∂t
+ ũ|η · ∇Qα︸ ︷︷ ︸

T1

− Ñ |η
∂2Qα

∂η2

︸ ︷︷ ︸
T2

= ω̃α|η︸︷︷︸
T3

+ eY︸︷︷︸
T4

, α = 1, ..., n (11)

whereQα = Ỹα|η represents the conditionally filtered mass fraction of theα-species,ũ|η is

the conditionally filtered velocity and̃ωα|η the conditionally filtered chemical source term. The
variableη is the sample space variable forZ (mixture fraction) and the operator·|η denotes
fulfillment of the condition on the right hand side of the vertical bar. The conditional fluctuations
around the conditional mean are neglected in the present first order CMC. The equations are



solved for then species of the reaction mechanism. The first term on the left-hand side of
Eq. 11 is the unsteady term. The second term represents the transport by convection (T1).
The last term on the left-hand (T2) side represents diffusion in mixture fraction space, i.e. the
conditionally filtered scalar dissipation rate term. The first term on the right-hand side (T3) is
the conditional chemical source term, determined using first order closure. The last term on
the right-hand side (T4) accounts for the conditional transport in physical space and is modeled

using the gradient approach:e
Y

= −∇·(ρ̄ ˜u′′Y ′′

α |η eP (η))

ρ̄ eP
≈ 1

ρ̄ eP (η)

∂
∂xi

[ρP̃ (η)D∗
t

∂Qα

∂xi

], whereD∗
t is the

sub-grid scale turbulent diffusivity. To obtain complete closure of Eq. 11, models are required
for Ñ |η, D∗

t andũi|η.
The conditionally filtered scalar dissipation rate is determined by AMC [4] using

Ñ |η =
ÑG(η)∫ 1

0
P̃ (η)G(η)dη

, (12)

whereÑ is the sum of the resolved and the sub-grid scale unconditional scalar dissipation rate,
as shown in Eq. 8. AMC always provides̃N |η as function of mixture fraction is prescribed by
the bell-shape of functionG(η) = exp(−2[erf−1(2η − 1)]2). This is the ultimate objective of
the present study to substitute the AMC expression, Eq. 12 bythe MMC formulation given by
Eq. 9.

In CMC, the equations for the species mass fractions and temperature are solved, based
on which the conditional density is calculated. Integration with the filteredβ PDF over mix-
ture fraction space yields the unconditional density, temperature and species mass fractions.
The LES and CMC solvers are coupled and the information from CMC is transferred at every
timestep of the simulation to the LES in order to update flow field.

A coarser spatial mesh is used to solve the CMC equations discretized in finite differences.
The CMC grid consists of 80× 5 × 5 cells where the domain is also divided into 4 blocks in
the axial direction. The mixture fraction is discretized into 50 bins, clustered around the most
reactive mixture fraction approximately equal to0.06. Information is transferred from the finer
LES spatial mesh to the coarser CMC grid using volume averaging. For conditional scalar dis-
sipation rate, the AMC model is applied directly to the CMC cells in order to obtaiñN |η. The
density-weighted filtered PDF (̃P (η)) is assumed to have aβ-shape on the CMC mesh. The
conditional turbulent velocity and diffusivity used in CMCare calculated by

ũi|η =

∫
ũiρ̄dV∫
ρ̄dV

|CFD∈CMC and D∗
t =

∫
Dtρ̄dV∫
ρ̄dV

|CFD∈CMC, (13)

respectively, wherẽui is the filtered velocity in the ith direction,Dt turbulent diffusivity (on
fine LES mesh) anddV the elemental volume.

MMC implementation
Due to increased memory allocation and our current computational system, the MMC equa-
tion, Eq. 1, can only be solved in two spatial dimensions: theaxial (y axis) and radial (z axis)
directions are kept. The centre plane is selected from the LES 3D domain and the LES mesh
resolution is maintained with the parallel implementation. 53 nodes are used to cover the refer-
ence space variable,ξ for the interval [-4,4] clustered aroundξ=0. A fractional step method is



applied: Eq. 1 is split into two ODEs (Eqs.14 and 15) following

∂Xz

∂t
= −U∇Xz︸ ︷︷ ︸

transport in space

, (14)

∂Xz

∂t
= A

∂Xz

∂ξ
− B

∂2Xz

∂ξ2
.

︸ ︷︷ ︸
transport in ξ space

(15)

The ODE including spatial transport is non-stiff and is solved using first-order explicit Euler
method. The second ODE considers transport inξ space and is solved using the VODPK solver
[14]. Boundary conditions are defined in both physical and reference spaces. Second order
central differencing scheme is used for the discretizationof diffusion terms, a second order
Total Variation Diminishing (TVD) scheme [15] for the spatial convective term and hybrid
scheme for convection inξ space. At the inlet (i.e.y = 0), Dirichlet boundary conditions are
used. At the outlet (y = 30d) and at both ends in the z direction, i.e.z = −10d andz = 10d,
zero gradient is imposed. Inξ space, atξ = −4 andξ = 4 zero gradient is imposed. Values of
U, A andB are calculated explicitly based on the solution at the previous iteration.

Initializations ofXz as a function ofξ are crucial in order to introduce the right amount of
“fluctuations” in the calculations. At every point in space,initializations are carried out in order
to conserve the first and second moments of Z such as

Z̃ = 〈Xz〉
∗ =

∫ ∞

−∞

XzPξdξ, (16)

Z̃”2 = 〈X ′
z〉

∗ =

∫ ∞

−∞

(Xz − 〈Xz〉
∗)Pξdξ. (17)

Results
First, LES and CMC are run for 80000 time steps, i.e. 20 ms, with each time step being equal
to ∆tLES = 2.5 × 10−7 s in order to have well-established burning conditions in thedomain.
The LES-CMC results for the same flame are reported in a different paper [16]. The predicted
lift-off height, temperature and species concentrations are shown to be in very good agreement
with experimental data. Thus, the present LES-CMC data provides excellent basis for the MMC
investigation. The MMC results shown thereafter are obtained starting from these frozen flow,
mixing and temperature fields. For illustration, Figure 2 gives the instantaneous temperature
contours at 20 ms provided by LES-CMC and used as initial datafor MMC. There is no issue
in the MMC-LES-CMC coupling. Note that MMC does not have any direct effect on the flow
and mixing fields, the link between MMC and CMC is through the determination of the condi-
tionally filtered scalar dissipation using Eq. 9. At this initial stage of the present MMC study
in LES-CMC, it is useful to separate the MMC results and investigate the MMC operation and
modelling alone before solving LES, CMC and MMC together. Inorder to examine the profiles
of mapping function and resulting conditional scalar dissipation rate, two points are selected in
the computational domain. Their coordinates are shown in Table 2. The values of̃Z andZ̃ ′′2

are also included in Table 2 as these have a direct impact on the shape of the mapping function,
Xz. These two points are also indicated in Fig. 2. Points 1 and 2 demonstrate relative high
level of subgrid fluctuations. Consequently, their respective mapping functions are expected to
represent a large range of mixture fraction values. Figure 3a) and b) shows the initial values
of Xz and values obtained after solving the MMC equation for 2200 time steps, i.e0.55 ms,
for point 1 and 2, respectively. As can be seen, the mapping functions did change in reference



Figure 2: Instantaneous temperature contours at 20 ms

Table 2: Specifications of Point 1 and 2

Point 1 Point 2

axial location,y (mm) 2.92 2.46

radial location,z (mm) 2.99 3.87

Z̃ from LES 0.864 0.265

Z̃ ′′2 from LES 0.88 × 10−2 0.767 × 10−2

space, whereas the mixing and velocity fields did not. In particular, Xz has the tendency to
become flatter resulting in lower subgrid fluctuations predicted by MMC. Using Eqs 16 and 17,
after 2200 time steps, at point 1 the calculated value forZ̃ andZ̃ ′′2 is 0.743 and0.566 × 10−2,
respectively. At point 2, the MMC recovered values are 0.149for Z̃ and0.553 × 10−4 for Z̃ ′′2

after 2200 time steps. These are to be compared with the initial values equal to the LES data
shown in Table 2. A discrepancy can be seen forZ̃ on the order to 14% and 43% for point 1
and 2, respectively. This difference in the MMC predictedZ̃ is a consequence of the low gene-
rated fluctuations in Z: at point 1, the sugbrid variance is underpredicted by 36%, whereas the
predicted subgrid fluctuations are more than 100 times smaller than expected at point 2. When
there is no fluctuation generated by the MMC velocity, the mapping function becomes flat and
constant in reference space tending to the filtered mixture fraction, Z̃. This is observed, for
example, when the term including the velocity gradient and turbulent flux, Eq. 5, is neglected.
Our preliminary test calculations confirmed this was the case, consistent with previous results
[9, 10]. The mapping functions are initialized using Eqs. 16and 17. Thus, no change would
be expected for the present “frozen” mixing and flow conditions. The underprediction of sub-
grid fluctuations is also shown in Fig. 4 a) where the radial profile of the MMC predicted rms
is compared with the LES values aty = 2.46 mm. The MMC subgrid fluctuation profile is
narrower and lower in magnitude compared to the LES values. Figure 4 b) also confirms the
same trend on the centreline in the entire domain. However, the subgrid fluctuation level is well
captured for distances up to 13d with decreasing level further downstream.

The possible sources of discrepancy can be either due to (i) numerical errors and/or due
to (ii) the selected submodels. In term of numerical implementation, the MMC equations are
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Figure 3: Mapping function in reference space,ξ
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Figure 4: Profiles of MMC predicted fluctuations compared with LES results. Zrms =

√
Z̃ ′′2 and MMC

values are obtained using Eq. 17

solved in two physical dimensions instead of three in the LESflow equations. It is difficult to
quantify this discrepancy, however, spatial transport in the circumferential direction is expected
to be much smaller than that in the other two (i.e. axial and radial) directions. Spatial transport
is discretized using the TVD scheme in MMC and LES, which is a second order approximation.
The fractional step method may be sensitive to the time step and number of steps. Throughout
our tests, the local MMC time step is shown to have a significant impact on the MMC solution.
This is also due to first order and explicit formulation of thetransient term in Eq. 1. Further,
as shown in Fig. 5, the two dominant terms in Eq. 1 are the two convective terms, one in
physical space and one in reference space. In all cases, diffusion appears to be much lower.
This observation on the MMC equation budget is in agreement with the findings of Vogiatzaki
et al. [9, 10]. The local time step is varied successively until no significant difference is noticed
in the mapping function profiles. The present local time stepcorresponds to∆tLES/200 =
1.25× 10−9 s. A higher value of∆tLES/100 also works and may have to be selected for future
calculations to save computational time. Qualitatively, the MMC equation and the resulting
mapping functions behave in a consistent manner according to what is reported by previous
MMC studies [9, 10]. Further improvements to the current implementation may still be possible.
However, after many tests and verifications, the observed discrepancy in the subgrid fluctuation
level in MMC is likely to be related to some modelling aspects, in particular, the fluctuation
generation mechanism in MMC. This points towards the linearmodel for the MMC velocity.
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Figure 6: MMC budget in Eq. 1 after 1 time step, ’CV space’ corresponds to the right-hand side (rhs)
of Eq. 14, ’CV xi’ first term of rhs in Eq. 15 and ’diffusion xi’ second term of rhs of Eq. 15.

The fluctuations are only introduced through Eq. 5 in MMC and any modelling inaccuracies
in the MMC velocity have a direct impact on the calculation ofA. According to the initial
MMC budget shown in Fig. 6a), at Point 1, balance is not completely achieved between the
two convective terms. However these two terms have oppositesigns and can be seen to reach a
balance within minor adjustments. However, in Fig. 6b), thesame budget at Point 2 reveals a
very different picture with both convective terms being of the same sign for positive values of
ξ. As a result they cannot balance each other without drastic changes in the mapping function
profiles. At this stage, further investigation is required to understand why the linear model
produces more reasonable values at some positions but incorrect at other positions.

Figure 7 shows the profiles of the conditionally filtered scalar dissipation rate using AMC
(homogeneous turbulent model), MMC from the initial valuesand MMC after 2200 time steps at
points 1 and 2. It is clear that the MMC shapes are significantly different from the AMC values.
The MMC predictions are not centered on a mixture fraction of0.5. In Fig. 7 a), the initial
MMC profile is close to AMC for mixture fractions larger than 0.5 but shows a cutoff around 0.4
where no mixing takes place between 0 and 0.4 in agreement with the lowest value ofXz in Fig.
3. This difference is expected to have an impact on the CMC calculations, which needs to be
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evaluated in future work. As can be seen in Fig. 7 b), initial MMC and AMC values are in close
agreement for very small values ofη. Initial MMC always produces values lower than those of
AMC, in particular for mixture fraction values larger than 0.1. The discrepancy in the predicted
level of fluctuations (after 2200 time steps) has the effect of lowering the magnitude of the scalar
dissipation rate. In particular, at point 2, the subgrid fluctuations are severely underpredicted
in MMC resulting in very small value of N. Thus, it appears important to reproduce the correct
LES values in MMC before moving to the fully coupled LES-CMC-MMC.

Conclusions
A first implementation of MMC as a mixing model was studied within the framework of LES-
CMC. As a first step, MMC was applied to “frozen” mixing and flowconditions from initial
LES-CMC simulations. It was shown that the level of subgrid fluctuations predicted by MMC
was lower than that obtained in LES. This discrepancy may stem from the numerical imple-
mentation and/or the submodels used in MMC. Without excluding entirely possible numerical
aspects, issues related to the modelling of the MMC velocityare more likely to be the explana-
tion. The validity of the linear model for conditional velocity is questionable [5, 9, 10] and other
closures are currently being investigated. The resulting conditionally filtered scalar dissipation
rate is significantly different in shape and magnitude compared to the AMC values. It is also
sensitive to the predicted MMC level of fluctuation. Thus, itis crucial to get the correct level of
fluctuations in MMC before moving to the next step, running fully coupled LES-CMC-MMC
and evaluate the impact of the newly modelled conditionallyfiltered scalar dissipation rate on
the prediction of lift-off height, species concentration and temperature.
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