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Abstract
A model to predict local extinction of partially premixed flames is presented. The new ap-

proach is based on parametrized scalar profiles (PSP) and can be viewed as a generalization of
the PSP mixing model. It was demonstrated earlier that the PSP model can accurately predict
joint distributions of multiple inert scalars and corresponding scalar dissipation rates. Here, the
profile parametrization is generalized for reactive scalars. For this purpose a flammable range
on the profile is considered. There, the chemical state is set to that in a laminar flamelet solu-
tion. The chemical states of the particles employed by a PDF solution algorithm relax towards
the parametrized reactive profiles, whereas the position in such a profile is determined by the
mixture fraction; latter is governed by the non-reactive PSP model. To account for flame prop-
agation, an ignition probability model is employed, which determines the mean concentration
of burning profiles. To test this approach, simulations of the Sandia D and F flame employing
the same model parameters were conducted. The PDF results of the Sandia D and F flame with
a largely different degree of local extinction are in good agreement with the measurements.

Introduction
As around 80% of the global energy consumption is covered by burning fuels [1], there exists
a great interest in the development of improved combustion devices. For many such devices
save operation conditions are of prime importance and therefore reliable prediction of local and
global extinction is vital. Latter is a challenging modeling task, for which different approaches
have been suggested.

Transported probability density function (PDF) methods [2, 3, 4] are attractive for turbulent
reactive flow simulations as they allow to process valuable joint statistical information and
thus can help to circumvent some of the critical closure problems, of which other approaches
are suffering. Originally the main motivation for PDF methods was their advantage that the
closure problem of averaging non-linear reaction source terms can be avoided, since the joint
distribution of species mass fractions and temperature is available. One ansatz is based on
direct integration of a detailed (e.g. [5]) or a reduced chemical mechanism [6, 7]. A problem
there is the typically huge computational cost, even if it is dramatically reduced with advanced
tabulation techniques like the ISAT algorithm [8], it remains high [9]. A more fundamental
modeling problem is modeling of molecular mixing, which is crucial for turbulent combustion
simulations. In fact, if direct integration or ISAT is applied, global extinction is subject to a
”competition” between chemical reactions and molecular mixing, and the quality of the micro-
mixing model is decisive. Moreover, it is problematic to treat mixing and reactions in two
separate steps. For example, a mixing model has to account for the steepening of reactive scalar
gradients due to chemical reactions; therefore in some cases the mechanical-to-scalar time scale
ratio is increased (e.g. in [10]). Alternative approaches include various mapping closures like
the widely used flamelet approach [11, 6], the multi moment closure (MMC) [12] or the REDIM
approach [13]. However, all these models rely on stable chemical reactions and therefore, at



least in their basic form, they are unsuited to predict extinction. To close this gap between the
flamelet at the quenching limit and the limit of pure diffusion, several methods to extend the
flamelet approach have been proposed [14, 15, 16, 17, 18].

The method devised in this paper is based on a reactive PSP (R-PSP) model combined with a
progress variable. The R-PSP model relies on parameterizations of burning and non-burning
scalar profiles. While the previously developed PSP model [19] is employed for the non-
reacting scalars (mixture fraction and reactive scalars of non-burning profiles), a more general
parametrization is required for the burning scalar profiles. Therefore, in addition to the pro-
file length and boundary compositions, also the chemical state in the enclosed reaction zone,
which is obtained from a flamelet library conditional on the local scalar dissipation rate, is taken
into account. Here it is assumed that ”ignition” of a non-burning profile occurs due to flame
propagation and that such a profile is ”ignitable” only if it overlaps with the flammable mixture
fraction range and if the scalar-dissipation rate in the flammable range is below the quenching
limit. To describe ”ignition”, an ”ignition” probability is introduced and has to be modeled.

A similar PDF method with the R-PSP mixing model and a closure for the ”ignition” prob-
ability was already successfully applied by Hegetschweiler et al. [20] to predict stationary so-
lutions of the Sandia F flame. In this paper it could be shown that the R-PSP model accurately
predicts the Sandia D and F flame with the same model constants applied.

In the next two sections, a brief overview of the PDF approach and the PSP mixing model
for inert scalars is given. Then, the R-PSP model is introduced and closure of the ”ignition”
probability is discussed. Finally, validation studies are presented before the paper is concluded.

PDF Modeling Framework
Before the combustion model is explained, we describe the probability density function (PDF)
modeling [2] framework which is used here. The transport equation for the mass weighted joint
PDF f (V, θ,Ψ; x, t) of velocity U, turbulence frequency ω and scalar vector φ in physical space
x and time t reads
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where 〈 ·| ·〉 and 〈·〉 denote conditional and unconditional expectations. Furthermore, V, θ and
Ψ are the sample space variables of U, ω and φ, respectively. Moreover, ρ is the density, p
the pressure and τi j the viscous stress tensor. The last term accounts for jump processes, which
may be considered for the evolution of certain scalars, e.g. of a binary progress variable as
introduced later in this paper.

Due to the high dimensionality of the V-θ-Ψ-x-space in which Eq. (1) has to be solved,
typically particle Monte Carlo methods are employed to compute numerical solutions. The mass
density function 〈ρ〉 f is then represented by a cloud of computational particles in the V-θ-Ψ-x-
space, which evolve in time according to stochastic differential equations (SDEs). These SDEs
are constructed such that the particle cloud evolution is consistent with a modeled PDF transport
equation. Here for example, particles (particle properties are denoted by the superscript ∗) with
a weight m∗, position x∗, velocity U∗, a turbulence frequency ω∗ and a particle property vector



φ∗ (required for the combustion model) evolve according to the equations
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where P = −fiuiu j∂Ũi∂x j is the turbulence production term, k = fiu ju j/2 the turbulent kinetic
energy and Ω the conditional turbulence frequency, which is employed to account for intermit-
tency effects as suggested by Jayesh and Pope (found in [3]). The operator ·̃ denotes mass (or
Favre) averaged quantities, C0, Cω1, Cω2, C3 and C4 are model constants and Wi is a Wiener
process (dWi has a normal distribution with 〈dWi〉 ≡ 0 and

¨
dWidW j

∂
= dt δi j). For the velocity

equation (3), the simplified Langevin model (SLM) [3] was employed to close the fluctuating
viscous and pressure terms, and Eq. (4) represents the Gamma distribution model for the tur-
bulence frequency. If compressibility effects are neglected (low Mach numbers), then the mean
pressure 〈p〉 can be computed on a grid by solving the Reynolds averaged Poisson equation
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in which the first right-hand side term can be ignored, if only steady state solutions are consid-
ered. All averaged quantities in Eqs. (3), (4) and (5) can be estimated from the particle cloud,
e.g. first extracted at the nodes of the grid employed to solve (5) and then interpolated from
there to the particle positions. A detailed description of a similar algorithm is found in [21],
where also a more efficient, consistent hybrid finite volume/particle PDF solution algorithm is
described. Latter was also employed for this work.

Short Review of the PSP Mixing Model
In the present work, the PSP mixing model by Meyer and Jenny [19, 22, 23] is employed to
evolve the mixture fraction values Z∗ = φ∗1 (here the first component of the scalar vector φ∗).
In the PSP mixing model the turbulent scalar field is represented by embedded scalar profiles
(1D, but aligned with the local scalar gradient). With this assumption, the scalar evolution is
governed by the one dimensional diffusion equation for constant diffusity and density along the
profile
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where Γ∗Z is the diffusion coefficient of the mixture fraction on the profile, x′ a local space
coordinate along the scalar gradient and Z′(x′, t) the parametrized mixture fraction profile. For



the parametrization at a given instance t, the sinusoidal ansatz
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is used, which then is employed to close the right-hand side of Eq. (6) leading to

dZ∗

dt
= − Γ∗Z

Å
π

λ∗

ã2

︸        ︷︷        ︸
C′φω

∗/2=1/τ∗φ

(Z′ − Z∗,c)Z′=Z∗ = −
1
τ∗φ

(Z∗ − Z∗,c) . (8)

Note that the profile length λ∗ is related to the mixing time scale τ∗φ as λ∗ = (Γ∗Zπ
2τ∗φ)

1/2, and ac-
cording to Spalding’s suggestion of a constant mechanical to scalar time scale ratio, a constant
value for C′φ is employed. Note that formulation (8) is similar to the IEM mixing model, except
that the mixing time scale τ∗φ and the drift target Z∗,c are modeled individually for each compu-
tational particle; in the IEM model, 2/(Cφ‹ω) and Z̃ are used instead of τ∗φ and Z∗,c, respectively.
Figure 1 shows an illustration of a parametrized mixture fraction profile.
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Figure 1: Illustration of parametrized inert scalar profile.

In a turbulent flow field, the profile boundary values Z∗,± themselves evolve and have to
be updated every time step. On one hand, they are re-initialized periodically when either the
constraint Z∗,− ≤ Z∗ ≤ Z∗,+ gets violated or when the lifetime of a profile is over. At each
re-initialization event the Z∗,± values are set equal to the mixture fractions of two arbitrary
particles from the same ensemble and the new lifetime is set proportional to 1/ω∗ [19]. On the
other hand, between two re-initialization events Z∗,± evolve continuously, for which several sub-
models have been suggested [19, 22, 23]. In this work we employ the IEM boundary treatment,
in which the profile boundary values drift towards the mean value like
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where C
′′
φ is a further model constant.

The PSP mixing model is particularly suited for flamelet modeling, as the instantaneous
scalar dissipation rates can be obtained accurately from the parametrized fine-scale profile [22,
23], e.g. for the mixture fraction Z
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Reactive PSP Model
In the case of reactive scalars the assumption of self-similar sinusoidal profiles is not justified
and therefore a more general parametrization is required. Here a reactive PSP (R-PSP) model
is devised, in which both molecular mixing and chemical reactions of multiple scalars (one of
them an inert mixture fraction) are treated together. While the PSP model for inert scalars is
employed to evolve the mixture fraction, evolving the reactive scalars is more complicated. For
the following explanations we consider the sensible enthalpy h as the reactive scalar of interest
and discuss profiles in the Z-h-space. Similar as in the steady flamelet approach, it is assumed
for a burning profile that the chemical state within the flammable mixture fraction range is
in reactive-diffusive equilibrium. This equilibrium depends on the scalar dissipation rate of Z
close to the stoichiometric value Z st; like the flammable mixture fraction range [Z st,−,Z st,+].
Now, together with the profile boundary values (Z, h)∗,± one can construct a burning profile
in the Z-h-space. Next, for simplicity and clarity the profile construction is explained for the
Burke-Schumann limit, i.e. Z st = Z st,− = Z st,+.

As already mentioned, it has to be distinguished between burning and non-burning profiles.
A profile is considered burning, if the requirement

Z∗− ≤ Z st ≤ Z∗,+ ∧ χ∗Z(Z st) < χq
Z ∧ c∗ = 1 (11)

is met, where χq
Z is the quenching limit and c∗ ∈ {0, 1} a modeled progress variable indicating

whether a profile is ”ignited”. With Eq. (10), condition (11) can be expressed as

0 ≤ (Z∗,+ − Z st)(Z st − Z∗,−)C′φω
∗ < c∗χq

Z . (12)

Non-burning profiles are treated by the PSP model for inert scalars, i.e. in the Z-h-space the
particle state (Z, h)∗ drifts straight towards the attraction point (Z, h)∗,a = (Z, h)∗,c (see Figure 2).
Moreover, at reinitialization two arbitrary particles from the same ensemble are selected to
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(Z, h)∗,c

(Z, h)∗,+

Figure 2: Parametrized non-burning profile in Z-h-space. Also shown is the particle state
(Z, h)∗ and the relaxation direction towards the attraction point (Z, h)∗,c (arrow).

determine the new profile boundary states.
In the case of burning profiles the parametrization consists of two connected lines in the

Z-h-space, i.e. of a left branch connecting the point (Z, h)∗,− with (Z, h)∗,st and a right branch
connecting (Z, h)∗,st with (Z, h)∗,+. The first coordinate of the point (Z, h)∗,c is Z∗,c = (Z∗,− +
Z∗,+)/2, while

h∗,c =


h∗,− + h∗,st−h∗,−

Zst−Z∗,− (Z∗,c − Z∗,−) if Z∗,c ≤ Z st

h∗,st + h∗,+−h∗,st

Z∗,+−Z st (Z∗,c − Z st) if Z∗,c > Z st ,

(13)



where h∗,st is estimated from a laminar flamelet solution. Two such profiles are depicted in
Figure 3. In the left one, Z∗ and Z∗,c are on the same side of Z st (here both Z∗ and Z∗,c

are smaller than Z st) and the particle state (Z, h)∗ drifts straight towards the attraction point
(Z, h)∗,a = (Z, h)∗,c (the drift rate is dictated by the mixing of Z∗). In the profile of Figure 3(b)
Z∗ and Z∗,c lie on opposite sides of Z st (here Z∗ < Z st < Z∗,c). In such cases, to satisfy localness,
the particle state (Z, h)∗ drifts straight towards the attraction point (Z, h)∗,a = (Z, h)∗,st (again the
drift rate is dictated by the mixing of Z∗). More formally, the enthalpy change ∆h∗ of a particle

h

Z

(Z, h)∗,−

(Z, h)∗

(Z, h)∗,c

(Z, h)∗,+

(Z, h)∗,st

(a)

h

Z

(Z, h)∗,−

(Z, h)∗

(Z, h)∗,c

(Z, h)∗,+

(Z, h)∗,st

(b)

Figure 3: Parametrized burning profiles in the Z-h-space (Burke-Schumann limit). Also shown
are particle states (Z, h)∗ and relaxation directions towards the attraction points (arrows).

during one time step of size ∆t can be written as

∆h∗ =
h∗,a − h∗

Z∗,a − Z∗
∆Z∗ , (14)

where ∆Z∗ is the change of Z∗ governed by the PSP mixing model for inert scalars. To determine
the new boundary states, Z∗,± and reactive scalars of non-burning profiles are treated like in
the PSP model for inert scalars, while for burning profiles the reactive scalars at the profile
boundaries are set to the corresponding flamelet solution.

So far the Burke Schumann limit was considered. Now it is explained how this model can
be generalized for more realistic cases with finite rate chemistry. For this extension it has to
be considered that reactions not only occur under stoichiometric conditions, but rather within
a flammable range, where Z ∈ [Z st,−,Z st,+] with Z st,− < Z st < Z st,+. To account therefore, Z st

in the R-PSP model explained above is replaced by the uniformly distributed random variable
Ẑ∗,st ∈ [Z st,−,Z st,+]∩ [Z∗,−,Z∗,+]. More difficult to treat are the secondary reactions, which occur
outside of the defined range [Z st,−, Z st,+] and as a result the particle states do not drift on a
straight line towards the attraction points. To account for this non-linear relaxation, a simple
mapping was introduced to the model. Therefore the sensible enthalpy is expressed as

h∗ = h∗,cold + a∗(h∗, f lamelet − h∗,cold) , (15)

where h∗, f lamelet = h f lamelet(Z∗, χ∗) and h∗,cold = hcold(Z∗) are the enthalpies from the reacting and
non-reacting flamelet solutions, respectively, and a∗ = (h∗ − h∗,cold)/(h∗,lamelet − h∗,cold). Now, to
compute the evolution of h∗, one has to replace Eq. (14) with

∆a∗ =
a∗,a − a∗

Z∗,a − Z∗
∆Z∗ . (16)



Local extinction of partially premixed flames is mainly governed by quenching, i.e. it occurs
where the scalar dissipation rate (of the mixture fraction in the flammable range) exceeds the
quenching limit. It is assumed here that re-ignition of a non-burning, but ignitable profile occurs
due to embedded triple flames propagating along stoichiometric mixture fraction manifolds and
that re-ignition is only possible, if the scalar dissipation rate is below the quenching limit; an
illustrative sketch (motivated by DNS data by Domingo and Vervisch [24]) is shown in Figure 4
(note that autoignition is not considered in this work). In general there exists a competition of
embedded triple flame propagation against local extinction and flow velocity. In the presented
model, as already mentioned at the beginning of this section, the state of a profiles is either
burning (if c∗ = 1) or non-burning (if c∗ = 0); the non-burning profiles represent states in
front and the burning ones states behind the triple flame tips. While it is straight forward to

flame front
lean premixed

triple flames

rich premixed
flame front

diffusion flame sheets

stoichiometric manifolds

Figure 4: Sketch of quasi laminar triple flames propagating along stoichiometric manifolds
into the fresh gas embedded in a turbulent flow field (inspired by Domingo and Vervisch [24]).

model local extinction, since the PSP model automatically delivers local scalar dissipation rates,
dealing with re-ignition is more tricky. Therefore the ”ignition” probability P was introduced,
which quantifies the likelihood that an ignitable (but non-burning) profile is ”reached” by a
triple flame during a time step of size ∆t. Here the model ansatz

P = 1 − exp
Ä
−β2ω̃〈c〉24t

ä
(17)

is proposed, where for this work β2 is a constant. Note that P is zero for 〈c〉 = 0 and rises
monotonically with 〈c〉.

Parameters and Results
Validation studies were performed with the Sandia D and F flames. Both are axi-symmetric jet
flames with a concentric pilot stream surrounded by an co-flow of 1 m/s. The jets consist of
methane diluted with air and have a diameter of d = 0.0072m. The surrounding pilot stream
is a premixed flame, for which we assume a mixture fraction to match an inlet temperature of
1880K; following the mixture fraction definition used for the experiments [25]. The jet and
pilot bulk velocities for Sandia D flame are 49.6m/s and 11.4m/s, respectively; for the Sandia
F flame they are 99.2m/s and 22.8m/s. Further information about the experimental setup and
the measurement techniques can be found on the web page of the International Workshop on
Measurement and Computation of Turbulent Non-Premixed flames (TNF workshop) [25]. The
flamelet library was produced with the FlameMaster code by Pitsch [26], whereas the widely



used GRI 2.11 mechanism was employed [5]. For the tabulation, 30 flamelet solutions for scalar
dissipation rates ranging from χst = 2.0 to χq = 400.0 were employed.
For the PDF simulations, an axi-symmetric 2D code was used. The orthogonal grid has a size
of 50 cells in axial and 60 cells in radial direction and is condensed in the jet and pilot regions.
An average of approximately 50 particles per cell was enforced by a consistent particle number
control algorithm. For the choice of the modeling parameters, the standard values of the SLM
proposed by Jayesh and Pope were used; expect for the constant Cω1, which was adjusted to
0.75. For the mixing model constants C′φ and Ct the suggested values of Meyer and Jenny [22]
were employed, i.e. C′φ = 13 and Ct = 13, and C′′φ was set to 2.5. However, as demonstrated
in [20], the results are quite insensitive to the choice of these mixing model constants. The
constant β2 was employed to ”tune” the Sandia F flame results, but then the same value of 100
was employed for the Sandia D flame calculations. Finally, the flammable range was set to
[Z st,− = 0.1,Z st,+ = 0.6].
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Ũ1exp

˜u1u2sim

˜u1u2exp

(c) x/d = 45

0 5 10

r/d [-]

0

75

150
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Figure 5: Sandia F flame results of mean axial velocity (›U1sim) and covariance (fiu1u2sim) in
comparison with experimental data (›U1exp, fiu1u2exp) at various downstream positions.

First, the results of the Sandia F flame are presented together with the experimental data. Fig-
ure 5 shows the mean axial velocity ›U1 and the Reynolds stress fiu1u2. The radial profiles of ›U1

are predicted very well; the covariance fiu1u2 on the other hand is under-predicted downstream
of x/d = 45. A possible explanation for this under-prediction might be that the relaminarization
which takes place far downstream can not accurately be captured by the SLM.
Figures 6 and 7 depict radial profiles of mean mixture fraction Z̃ and temperature ‹T together
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Figure 6: Sandia F flame results of mean mixture fraction (Z̃sim) and its rms value (Zrms,sim) in
comparison with experimental data (Z̃exp, Zrms,exp) at various downstream positions.

with their rms values. While Z̃ is slightly over-predicted along the symmetry axis, the rms



values of Z generally are in good agreement, except the location of the peak is a bit off at the
downstream positions x/d = 45. Also the radial mean temperature profiles are in good agree-
ment; the rms temperature is generally under-predicted.
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Figure 7: Sandia F flame results of mean mixture temperature (‹Tsim) and its rms value (Trms,sim)
in comparison with experimental data (‹Texp, Trms,exp) at various downstream positions.

Below the results for the Sandia D flame calculations are presented. In Figure 8 the mean
axial velocity ›U1 and its covariance fiu1u2 are shown. Like in the Sandia F flame calculations, the
radial profiles of ›U1 are predicted well, except for a small over-prediction downstream of the
position x/d = 45, but the covariance fiu1u2 is under-predicted. Again it is speculated that latter
inaccuracy might be due to the inability of the SLM to capture relaminarization effects, which
are more pronounced in this test case.
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Figure 8: Sandia D flame results of mean axial velocity (›U1sim) and covariance (fiu1u2sim) in
comparison with experimental data (›U1exp, fiu1u2exp) at various downstream positions.

Figures 9 and 10 depict radial and axial profiles of mean mixture fraction Z̃ and temperature‹T together with their rms values. Overall mean and rms mixture fraction values are predicted
well, except for the over-prediction of Z̃ around the symmetry axis and the under-prediction of
Zrms downstream of x/d = 45. Similarly good results can be observed for the radial mean and
rms temperature profiles, despite at position x/d = 60 where ‹T is over-predicted around the
symmetry axis.
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Figure 9: Sandia D flame results of mean mixture fraction (Z̃sim) and its rms value (Zrms,sim) in
comparison with experimental data (Z̃exp, Zrms,exp) at various downstream positions.
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Figure 10: Sandia D flame results of mean temperature (‹Tsim) and its rms value (Trms,sim) in
comparison with experimental data (‹Texp, Trms,exp) at various downstream positions.

Conclusions
A model for partially premixed combustion in the context of transported PDF methods is de-
vised, which extends the ideas of the inert PSP mixing model for reactive flows. To prop-
erly account for local extinction, two types of idealized reactive profiles are considered. Their
states (burning or non-burning) evolve as function of their instantaneous scalar dissipation rates,
the individual profile boundary conditions and an ignition probability; latter is decisive for re-
igniting extinct profiles. Dependent on the profile state different profile parameterizations are
employed; one for non-burning profiles like considered in the PSP model for inert scalars, and
one for burning profiles, which involves an additional attraction point within the flammable
range. The chemical state at the attraction point is taken from a corresponding laminar flamelet
table.

Overall, studies of the Sandia flames D and F show good agreement between simulation
results and experimental data. They also demonstrate that the model is capable of predicting
two different jet flames with largely different degrees of local extinction.

As next step it is planned to investigate the capability of this model to predict global extinc-
tion. Therefore it will be necessary to better understand and improve the ignition probability
model, which proved to be not very critical for the test cases presented in this paper. Further-
more it is intended to develop a mapping closure for the chemical state with additional progress
variables to capture the ignition delay, which is neglected in the current version of the model.
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