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Abstract 

Three-dimensional simplified chemistry based Direct Numerical Simulations (DNS) of 
statistically planar turbulent stratified flames at global equivalence ratios 7.0   and 

0.1   have been carried out to analyse the statistical behaviour of the transport of co-

variance of the fuel mass fraction FY  and mixture fraction   fluctuations (i.e.  /FY ) for 

Reynolds Averaged Navier Stokes simulations where q ,  /~ qq   and qqq ~  are 
Reynolds averaged, Favre mean and Favre fluctuation of a general quantity q  with   being 
the gas density and the overbar suggesting a Reynolds averaging operation. It has been found 

that existing algebraic expressions cannot adequately capture  /FY  behaviour for low 

Damköhler number combustion and therefore, a transport equation for  /FY  may need to 

be solved. The statistical behaviours of  /FY  and the unclosed terms of its transport 

equation (i.e. the terms originating from turbulent transport 1T , reaction rate 4T  and molecular 

dissipation 2D ) have been analysed in detail. Through an a-priori DNS analysis, the 

performances of the models for 1T , 4T  and 2D  have been assessed. 
 
Introduction 

 In turbulent stratified flames, the co-variance of fuel mass fraction FY  and mixture fraction 
  fluctuations is often required for reaction rate closure [1-3]. In the context of Reynolds 

Averaged Navier Stokes (RANS) simulations, the co-variance of FY  and   fluctuations is 

given by  /FY . Mura et al. [3] proposed an algebraic expression for  /FY  for 
turbulent stratified flames. An a-priori DNS analysis by Malkeson and Chakraborty [4] 
demonstrated that the algebraic expression proposed by Mura et al. [3] may not adequately 

account for the statistical behaviour of  /FY  for low Damköhler number Da  
combustion, and such cases may require the solving of a modelled transport equation of 

 /FY . To date there has not been a study in the existing literature where the transport of 

 /FY  is addressed and modelling of the unclosed terms are analysed based on an a-
priori analysis of DNS data. Thus, it is useful to analyse the statistical behaviour of co-

variance  /FY  transport under low Damköhler number conditions to address this void in 
the existing literature. In this respect, the main objectives are as follows: 



 

1. To analyse the statistical behaviour of the unclosed terms of the  /FY  transport 
equation, especially under low Da  conditions in the context of RANS simulations. 

2. To identify appropriate models for the unclosed terms of the  /FY  transport equation 
in the context of RANS by comparing the model predictions with the corresponding 
quantities extracted from DNS data. 

The necessary mathematical background and the numerical implementation details will be 
presented briefly in the next section. Following this, the results will be presented and 
subsequently discussed. Finally, the main conclusions will be drawn. 
 
Mathematical Background and Numerical Implementation 

 Ideally both three-dimensionality of turbulence and detailed chemical mechanism should 
be accounted for in combustion DNS studies, but such simulations still remain extremely 
expensive. For an extensive parametric study, three-dimensional DNS simulations have been 
carried out where a single-step irreversible Arrhenius-type chemical mechanism has been 
modified to mimic the realistic )(bS  variation with   for hydro-carbon flames [5]. In this 

study, viscosity  , thermal conductivity   and density-weighted mass diffusivity D  are 
taken to be equal for all species, and independent of temperature. The Lewis numbers 

DLe T /  of all species are taken to be unity. The species field in stratified flames is often 

characterised in terms of FY  and  . The mixture fraction   is defined as:  

           )//()//( sYYsYsYY OFOOF      (1) 

where OY  is the oxidiser mass fraction, OY  is the oxidiser mass fraction in air and FY  is the 

fuel mass fraction in the pure fuel stream. The values for s , FY  and OY  are taken to be 

s  4 ; 0.1FY  and 233.0OY , which yields the stoichiometric fuel mass fraction (mixture 

fraction) 055.0FstY  ( 055.0st ). These values are representative of methane-air combustion. 

For stratified flames, a reaction progress variable c  can be defined in terms of FY , so that it  
rises monotonically from 0 (in unburned reactants) to 1 (in fully burned products) [4,6]: 

              ])]1/()(,0max[/[)(   FststFFF YYYYc    (2) 

Mura et al. [3] have proposed an algebraic expression for  /FY  for turbulent stratified 
flames based on a presumed probability density function (pdf) approach, where combustion is 
assumed to take place in thin flamelets, and the Favre joint pdf ),(

~ FYP  is modelled as:  
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where )|( FYP   is the pdf of   conditional on FY  and the quantities  )(maxY  and  

))(()(min stAY    are maximum and minimum values of YF  according to the Burke-

Schumann diagram, where )(A  is given by )1/()()( ststHA     where )( stH    is 

a Heaviside function [1-3]. For Da 1, the chemical time remains infinitely small for any 
value of  , and thus W  is unlikely to depend on   which leads to the condition: 
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Based on eq. 3, Mura et al. [3] derived the following algebraic expression for  /FY :  
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For RANS simulations, the transport equation of  /FY  takes the following form [2]:  
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where ju  is the velocity component in the thj  direction, F  is the reaction rate of fuel, D  is 

the fuel mass diffusivity and   /~  FY YD  is the cross-scalar dissipation rate. The 

first (second) term on the left hand side of eq. 6 denotes the transient (mean advection) effects 

on  /FY  transport. The term 1D  signifies the molecular diffusion of   /FY . The 

term 1T  denotes the turbulent transport of  /FY , and the terms 2T  and 3T  indicate 

generation/destruction of  /FY  by mean scalar gradients jF xY  /
~

 and jx /
~  

respectively. The term 4T  denotes the chemical reaction rate contribution to  /FY  
transport and 2D  signifies the effects of molecular dissipation of  /FY . In eq. 6, the 

terms 41, TT  and 2D  are unclosed and require modelling. The term 2T  ( 3T ) involve the 

turbulent scalar flux FjYu   (  ju ), which requires modelling in the context of RANS, and 

can be considered to be closed in the context of second-moment closure but the accuracy of 

evaluating these terms depends upon the modelling of FjYu   (  ju ). The statistics of the 

unclosed terms of the  /FY  transport equation will be discussed later in this paper.  

 In this work, three-dimensional DNS of statistically planar, freely-propagating turbulent 
stratified flames have been carried out with global   values of 7.0   and 0.1   
under decaying turbulence. The flame is initialised by an unstrained planar laminar premixed 
flame solution for equivalence ratio  . A random bi-modal distribution of   is introduced in 
the unburned reactants using a pseudo-spectral method [7], whereas turbulence is initialised 
by a homogeneous isotropic incompressible velocity field, which is generated using a 
standard pseudo-spectral method [8] following Batchelor-Townsend spectrum. The initial 
value of the rms equivalence ratio fluctuation   is 0.6 in all cases. The values of normalised 

initial rms turbulent velocity fluctuation )0.1(/  bSu , integral length scale of turbulent velocity 

field to flame thickness ratio 0)0.1( /. DSl b   and the ratio of integral length scale of mixture 

inhomogeneity to integral length scale of turbulent velocity field ll /  are listed in Table 1 

along with the value of heat release parameter 00)1( /)( TTTad    and turbulent Reynolds 

number tRe . The values of Damköhler number )()()( /     thb ulSDa
 
and Karlovitz 

number 2/1
0)(

2/3
)()( ]/.[]/[ 

  DSlSuKa bb   are listed in Table 1 where 



 

L
adth TMaxTT ˆ/)( 0)(     is the thermal flame thickness of a laminar premixed flame 

with equivalence ratio equal to   , with the subscript ‘L’ denoting unstrained planar 

laminar premixed flame quantities. For the values of )( Ka  in Table 1, the combustion 

situation belongs to the thin reaction zones (TRZ) regime [9]. Standard values are taken for 
Prandtl number 7.0Pr   and the ratio of specific heats 4.1/  VP CC . The Zel’dovich 

number 2
)1(0)1()( /)(    adadac TTTT  is taken as )(6  f  where 2)1(25.81)(  f  

for 64.0 ; 2)07.1(443.11    for 07.1 and 1)( f  for 07.164.0    following 

Tarrazo et al. [5]. The heat release per unit mass of fuel )(00)( /)(  FPad YCTTH   is given 

by: 1/ 1  HH  for 1  and )1(1/ 1   HHH
 
for 1  where H  is given by 

21.0H  [5].  

Table 1: Simulation parameters corresponding to the DNS database. 

 Case )1(/ 
 bSu   0)1( /. DSl b     tRe )( Da )( Ka       ll /  

A 8.0 4.2 3.0 57 0.25 10 1.0 0.6 2.2 
B 4.0 4.2 3.0 28.5 0.51 4 1.0 0.6 2.2 
C 8.0 4.2 3.0 57 0.05 50 0.7 0.6 2.2 
D 4.0 4.2 3.0 28.5 0.10 18 0.7 0.6 2.2 

 
The simulation domain is a cube of size fff lll 282828  , where fl  is the Zel’dovich 

thickness (i.e. )0.1(0 /  bf SDl ). Cartesian grid of size 200200200   with uniform grid 

spacing in all three directions is used to discretise the domain. To resolve the flame structure, 
approximately 10 grid points are kept within )1(0)1( /2    bth SD . The boundaries in the 

direction of mean flame propagation (i.e. 1x -direction) are considered to be partially non-
reflecting and are specified using the Navier-Stokes Characteristic Boundary Conditions 
technique and transverse directions are periodic. A 10th order central difference scheme is 
used for spatial differentiation for the internal grid points and the order of numerical 
differentiation decreases to an one-sided 2nd order scheme near non-periodic boundaries. A 
low storage third-order Runge-Kutta scheme has been used for time advancement. All the 
cases are run for about 5.2  initial eddy turn-over times ( ftult 5.2/5.2  ) which is greater than 

or comparable to the chemical time scale )]/1(/[ )(0
2

)(0     bbSD . At the time the statistics 

were extracted, both the global turbulent kinetic energy and burning rate were not changing 
rapidly with time. Moreover, the qualitative nature of the results presented in the paper did not 
change since ftt 5.1 . The temporal evolutions of global turbulent kinetic energy and 

burning rate were presented elsewhere [4] and are not repeated here for the sake of brevity. 
When statistics were extracted, the global u  decreased by 43%, 40%, 39% and 29% in cases 
A-D respectively, and the normalised turbulent flame speed )(/ bT SS  settled to 2.2, 1.7, 1.8 

and 1.5 for cases A-D respectively, where ST  is defined by   00/ FPFT YAdS   where 

 0FY  is the mean fuel mass fraction in the unburned gas ahead of the flame, PA  is the 

projected flame area in the direction of the flame propagation, and d  is an infinitesimal 
volume element. The Reynolds/Favre averaged values of the relevant quantities are evaluated 



 

by ensemble averaging over a number of planes normal to the direction of mean flame 
propagation [4]. The statistical convergence of the Reynolds/Favre averaged quantities are 
assessed by comparing the values based on half of the samples in the transverse direction with 
the corresponding quantities evaluated based on full sample size. The agreement between the 
Reynolds/Favre averaged values based on half and full sample size are found to be 
satisfactory. In this paper, for the sake of brevity, only the results obtained based on full 
sample size will be presented. 

 

      
Figure 1 (a) The FY  field at the central 21 xx   plane at t  2.5t f  for case A. The white lines 

indicate the contours of c  from 9.01.0   from left to right in steps of 1.0 . (b) The c  0.8 
iso-surface coloured with local    at t  2.5t f  for case C. 

 
Results and Discussion  
 Figure 1a shows the YF  field at the central 21 xx   plane at t  2.5t f  for case A, where the 

white lines indicate the c  contours from 1.0  to 9.0  from left to right in steps of 0.1. Figure 
1a shows that c  contours representing the preheat zone (i.e. 5.0c ) are more distorted than 
those representing the reaction zone (i.e. 9.07.0  c ), which is typical of the TRZ regime 
combustion where the flame thickness (Kolmogorov length scale  ) remains greater than the 
Kolmogorov length scale   (reaction zone thickness). As a result of this, energetic turbulent 
eddies penetrate into the flame and distort the preheat zone whereas the reaction zone retains 
its quasi-laminar structure. It can be seen from Fig. 1a that YF  varies in the unburned reactants 
and does not remain constant across a given c  iso-surface, which is also substantiated by Fig. 
1b where c  0.8  iso-surface is coloured with local values of  .  

 As cases A-D are statistically planar in nature, c~  remains a unique function of the co-
ordinate in the direction of mean flame propagation (i.e. 1x -direction) and thus, the variations 

of all the terms relevant to  /FY  transport will henceforth be presented as a function of 
c~ . Figures 2a-d demonstrate that the model given by eq. 5 predicts the general qualitative 

trend of  /FY  but over-predicts its magnitude for 7.0   cases, but eq. 5 

significantly under-predicts the magnitude of  /FY  in the reaction zone for 0.1   

cases (cases A and B). Moreover, eq. 5 does not capture the behaviour of  /FY  in the 
reaction zone and this limitation is more apparent in 0.1   cases than in the 7.0   

cases. It should be noted that eq. 5 is derived based on eq. 3 where ),(
~ FYP  is expressed in 

terms of discrete delta functions [3]. As ),(
~ FYP  cannot be approximated by eq. 3 for low 

Da  combustion [4], the expression for  /FY , which is derived based on eq. 3, also 

becomes invalid for small values of Da . Ribert et al. [2] modelled  /FY  as a function of 

( a ) ( b )



 

 /2
FY   and  /2  (i.e. 2/122/12 )/()/(/   FF YY ). The variations of 

2/122/12 )/()/(  FY  are compared with  /FY  variation obtained from DNS in 

Figs. 2a-d. Figures 2a and b show that 2/122/12 )/()/(  FY  significantly over-predicts 

the magnitude of  /FY  and does not even capture the qualitative behaviour of  /FY  

in 0.1   cases. By contrast, the qualitative behaviour of  /FY  can be predicted by 
2/122/12 )/()/(  FY  for 7.0  cases (see Figs. 4c and d) but 2/122/12 )/()/(  FY  

significantly over-predicts the magnitude of  /FY . The above findings suggest that 

algebraic expressions may not be sufficient to capture  /FY  behaviour for small values 

of Da  and it may be necessary to solve a modelled transport equation for  /FY . 
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Figure 2 Variations of  /FY  with c~  across the flame-brush along with the predictions of 

eq. 5 and 2/122/12 )/()/(  FY  for cases: (a) A, (b) B, (c) C and (d) D. All terms in 

(a)-(d) are normalised using stFstY  . 

For statistically planar stratified flames the transport equation of  /FY  (eq. 6) takes the 
following form: 
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The variations of the terms on the right hand side of eq. 7 with c~  across the flame brush are 
shown in Figs. 3a-d for cases A-D. Figures 3a-d indicate that 1T  remains a major contributor 
in all cases exhibiting large positive values towards the unburned gas side, before decreasing 
to smaller values for the rest of the flame-brush. The term 2T  is predominantly negative in all 

cases, but does exhibit some small positive values. The term 3T  shows similar behaviour in all 

cases exhibiting predominantly negative values towards the unburned gas side before 
becoming positive towards the burned gas side of the flame-brush with a transition close to 
the middle of the flame-brush. The contributions of 2T  and 3T  remain small in comparison to 

the contributions of 1T  and 4T  for all cases. The reaction rate term 4T  exhibits both positive 
and negative values and remains a major contributor in 0.1   cases, but becomes less 

important in 7.0   cases. The term 1D  assumes small positive values towards the 
unburned gas side but becomes negative towards the reaction zone before assuming positive 
values again towards the burned gas side of the flame-brush in 0.1   cases. In 

7.0   cases, the transition from positive to negative values of 1D  takes place closer to 



 

the unburned gas side than in 0.1   cases. The term 2D  has been found to be a major 
contributor in all cases and remains predominantly negative in all cases, but exhibits small 
positive values in the region 3.0~15.0  c  in case B. It should be noted that 2D  assumes 

non-zero values at 0c  due to mixture inhomogeneity. As the terms 2T  and 3T  are closed in 

the context of second moment closure, the modelling of 1T , 4T  and 2D  will be addressed next 
in this paper.    

 

0  0.2 0.4 0.6 0.8 1  
−0.02

−0.01

0

0.01

0.02

0.03

T
er

m
s×

D
0
/ρ

0
S

2 b(
φ
=

1
)Y

F
st

ξ s
t

 

 

c̃
0  0.2 0.4 0.6 0.8 1

−0.01

−0.005

0

0.005

0.01

c̃
 

 

0  0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

c̃
 

 

0  0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

c̃
 

 

T1

T2

T3

T4

D1

−D2

 
Figure 3 Variations of the terms 1T , 2T , 3T , 4T , 1D  and 2D  with c~  across the flame-brush 

for cases: (a) A, (b) B, (c) C and (d) D. All the terms are normalised with respect to 
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Figure 4 Variations of stFstb YSYu   )1(01 /   with c~  across the flame-brush with the 

model predictions of 1/)/( xYFt    and eq. 8 for cases: (a) A, (b) B, (c) C, (d) D. 

 
The expression of 1T  indicates that the modelling of this term translates to the modelling of 

  FYu1 . The variations of   FYu1  with ˜ c  for cases A-D are shown in Figs. 4a-d 

respectively, which demonstrate that   FYu1  assumes positive values towards the unburned 
gas side of the flame-brush, before assuming small values towards the burned gas side for all 
cases. In 0.1   cases, small negative values of   FYu1  have been observed but the 

magnitude of the negative contribution remains small. The quantity   FYu1  is often 

modelled using the gradient hypothesis 11 /)/( xYYu FtF    [2] where 

 ~/
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09.0 2kt   is the eddy viscosity,   is a turbulent Schmidt number,  2/
~

uuk i   is 

the turbulent kinetic energy and  ///~
jiji xuxu   is its dissipation rate. Figures 4a-d 

show that 1/)/( xYFt    cannot accurately predict the qualitative behaviour of 

  FYu1  and it has been found that   needs to be modified from one case to another for 

capturing the correct magnitude of   FYu1  , as obtained from DNS data. An expression for 

  FYu1   can be derived using eq. 3 and the identity 
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It is evident from Figs. 4a-d that eq. 8 captures the qualitative behaviour of   FYu1  
satisfactorily for all cases. Although eq. 8 is derived based on eq. 3, which is strictly valid for 
high Da  flames, the quantitative agreement between the prediction of eq. 8 and DNS data 
remains satisfactory for all the cases apart from the under-prediction towards the unburned 
gas side of the flame-brush in case B.  

 Libby and Williams [10] assumed the following presumed joint pdf 
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2211 FFWFFWF YYYYYP    where 1 , 2 , 1FY  and 2FY  are 

given as: 

1  ˜ (k1  2 /)1/2, 2  ˜  (k2 2 /)1/2, YF1 ˜ Y F (k1 Y F
2 /)1/2, YF2  ˜ Y F  (k2 Y F

2 /)1/2      (9a) 

where W  is given by: 2/1
21 )/1/(1 kkW   with maxmin1 / ggk   and minmax2 / ggk   in 

which maxg  and ming  are the maximum and minimum values of attained by a  curvilinear co-

ordinate g  in the region bound by the equilibrium and the mixing lines on the Burke-
Schumann diagram [2,3,10]. The quantity g is defined as [2,3,10]:  
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2211 FFWFFWF YYYYYP    one obtains: 

         21 ).1(   WWF  ;   ~
])1([)1( 2122114  WWWWT        (9c) 

where 1  ( 2 ) is the fuel reaction rate when the fuel mass fraction and mixture fraction 

values are given by 1FY  and 1  ( 2FY  and 2 ) respectively. Robin et al. [3] extended this 

approach by considering the following ˜ P (YF ,):  
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1 FYP  and )(
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2 FYP  are given by [3]: 
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In eqs. 10a and 10b the coefficients 44 ,  and 4 are expressed as [3]: 
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According to Robin et al. [3] the quantities 14241 ,, FY  and 2FY  are given by: 
2/12
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In eq. 10b, the quantities 211211 ,, FFF YYY  and 22FY  are given by [3]: 
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The quantities max  and min  are maximum and minimum values of   within the domain of 

definition and max
1FY  and min

1FY  ( max
2FY  and min

2FY ) are the maximum and minimum values of fuel 

mass fraction at 41  ( 42 ) [3]. The variances )/( 2
1  FY   and )/( 2

2  FY   are evaluated as [3]: 
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According to eq. 10a the quantities F  and 4T  are modelled as [3]:  

                   DCBAF   )1)(1()1()1( 44444444                   (10g) 

           


~

])1)(1()1()1([

)1)(1()1()1(

444424444

42444144424441444

DCA

DCBAT








   (10h) 

where A  and B  ( C  and D ) are the fuel reaction rates when the fuel mass fraction values 

are given by 11FY  and 12FY  ( 21FY  and 22FY ) respectively at a mixture fraction 41  ( 42 ). The 
predictions of eqs. 9c and 10h are shown in Figs. 5a-d for cases A-D respectively. Figures 5a-
d show that both the models given by eqs. 9c and 10h over-predict the magnitude of 4T  in all 
cases. However, the prediction of eq. 9c remains predominantly positive throughout the 
flame-brush, but eq. 10h exhibits negative values towards the burned gas side. It should be 
noted that whilst deriving the models given by eqs. 9c and 10h, ),(

~ FYP  was approximated 

by discrete delta functions [3]. However, a recent analysis [3] demonstrated that ),(
~ FYP  

cannot be approximated in terms of discrete delta functions for low Da  combustion. The 
extent of the inaccuracy incurred by approximating ),(

~ FYP  by discrete delta functions can 
be characterised in terms of segregation factor S  which can be defined as [3]: 
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Figure 5 Variations of 2

)1(004 /   bstFst SYDT  with c~  across the flame-brush with the 

prediction of the models given by eqs. 9c, 10h, 12a, 12b for cases: (a) A, (b) B, (c) C, (d) D. 

For high values of Da , the segregation factor becomes unity (i.e. 0.1S ) which indicates 
that ),(

~ FYP  can be approximated by discrete delta functions [1,2,10]. For low Da  
combustion, the models given by eqs. 9c and 10h are modified as:  

                          ]
~

])1([)1([ 2122114   WWWWSCT                (12a) 

      }
~

])1)(1()1()1([

)1)(1()1()1({

444424444

42444144424441444





DCA

DCBASCT








 (12b) 

where SC  in eqs. 12a and 12b is taken to be: 
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For large values of Da , the segregation factor S  approaches to unity, giving 0.1SC . 

Therefore, eqs. 12a and 12b become equal to eqs. 9c and 10h respectively, for high values of 
Da . Figures 5a-d show that eqs. 12a and 12b are in better agreement with 4T  obtained from 
DNS data than eqs. 9c and 10h. Equation 12b captures both the qualitative and quantitative 
behaviour of 4T  for all cases better than the models given by eqs. 9c, 10h and 12a. 

 Equation 6 indicates that the modelling of 2D  is dependent upon the accurate evaluation of 
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~ . Mura et al. [3] proposed a model for Y
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where YC  is a model parameter. It should be noted that the quantity ]
~

[  FF    in eq. 13 is 

unclosed, and its modelling was addressed earlier in the context of 4T  modelling. The model 

given by eq. 13 will henceforth be referred to as CDM. The variations of Y
~  with c~  are 

shown in Figs. 6a-d for cases A-D. Figures 6a-d show that Y
~  assumes non-zero values at 

0~ c  due to the mixture inhomogeneity ahead of the flame, and approaches to a negligible 
value at 0.1~ c  due to the smaller magnitude of fuel mass fraction gradient in the burned gas. 
The predictions of the model given by eq. 13 are shown in Figs. 6a-d for optimum values of 

YC  evaluated using 

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c DNS dxQdxQ  [4,11] where subscripts DNS and Model 

are used to refer to quantities obtained from DNS and from the model prediction respectively. 
The model given by eq. 13 when ~  and ]

~
[  FF    are extracted from DNS data captures 

the qualitative and quantitative behaviours of Y
~  obtained from DNS data in 7.0   

cases. However, the qualitative and quantitative behaviours of Y
~  are not adequately 

captured by eq. 13 in 0.1   cases. The CDM model significantly over-predicts Y
~  at the 

middle of the flame-brush in cases A and B. Moreover, negative values of Y
~  are predicted 

by eq. 13 towards the burned gas side in 0.1   cases, whereas Y
~  obtained from DNS 

remains positive. It can further be seen from Figs. 6a-d that the optimum value of YC  

increases with increasing )1(/  bSu  for a given value of   . The optimum value of YC  is 

found to decrease with decreasing    for 0.8/ )1(  bSu  cases whereas a marginal 

increase in the optimum value of YC  is observed when    decreases from 1.0 to 0.7 for 

0.4/ )1(  bSu . However, the model given by eq. 13 does not capture the correct qualitative 

behaviour of Y
~  even with the optimum YC  value for 0.1   cases. For eq. 13, ~  and 
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/~(~ 2 kC  for the optimum values of YC  and 0.1C  are also shown 

in Figs. 6a-d, where ]
~

[  FF    is extracted from DNS data (denoted as CDM-LR model in 

the Fig. 6). Figures 6a-d suggest that, for 0.1C , the CDM-LR model predicts greater 



 

values than the prediction of the CDM model in 0.1   cases, but the prediction of the 
CDM-LR model remains comparable to the values obtained from DNS in 7.0   cases. 

This indicates the modelling of 
~  does affect the performance of eq. 13 for 0.1   cases, 

but has a small affect in 7.0   cases. The predictions of eq. 13, where ~  is modelled as 

  /)
~

/~(~ 2 kC  and ]
~

[  FF    are modelled by eqs. 12a and 12b, are also shown 

in Figs. 6a-d, which are denoted as the CDM-2D and CDM-4D models respectively. Figures 
6a-d show both the CDM-2D and CDM-4D models predict the qualitative behaviour of Y

~ , 

but they over-predict the magnitude of Y
~ , especially in 0.1   cases. The extent of 

these over-predictions is small in 7.0   cases where the effects of 4T  on the  /FY  

transport are relatively weak. Recently, Nguyen et al. [12] expressed Y
~  as   ~~~  YY  

but Figs. 6a-d suggest that  ~~ Y  significantly over-predicts Y
~  in all cases, which is 

most apparent in 0.1   cases, though the extent of the over-prediction reduces in 
7.0   cases. As the existing algebraic models are not capable of predicting the correct 

Y
~  behaviour for all values of    and  )1(/  bSu , it may be necessary to solve a modelled 

transport equation for Y
~ . 
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Figure 6 Variations of stFstbY YSD  

2
)1(0 /~

  with c~  across the flame-brush and predictions 

of CDM, CDM-LR, CDM-2D and CDM-4D models for cases: (a) A, (b) B, (c) C, (d) D. 
 
Conclusions 

 Three-dimensional DNS of statistically planar turbulent stratified flames with 7.0   

and 0.1   have been carried out to analyse the statistical behaviour of  /FY  transport 
for low Da  combustion. The existing algebraic models do not adequately capture the 

behaviour of  /FY  for low Da  combustion. The modelling and statistical behaviours of 

the unclosed terms of the  /FY  transport equation (i.e. 1T , 4T  and 2D ) have been 
addressed for RANS simulations. Performances of the models for the unclosed terms of the 

 /FY  equation have been assessed based on a-priori DNS analysis. A suitable model has 

( a ) ( b ) 

( c ) ( d )



 

been identified for 1T  and suggestions have been made to improve the performances of 

existing models for 4T  for low Da  combustion. Current algebraic models cannot predict 
cross-scalar dissipation rate Y

~  for all values of    and u  considered in this study. 

Therefore, either improved algebraic models are required to be developed, or a modelled 
transport equation of Y

~  must be solved to obtain closure of 2D . The present study has 

been carried out for modest values of tRe  but the arguments which were used for modelling 

the unclosed terms of the  /FY  transport equation are also applicable for higher values of 

tRe . The effects of detailed chemistry and differential diffusion rate of mass and heat are not 

considered in the present analysis. This necessitates both experimental and detailed-chemistry 
DNS based validation of the proposed models for higher values of tRe . 
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