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Abstract 
In this preliminary work, the application of a POD/Galerkin empirical spectral 
method is demonstrated on a pseudo-homogeneous tubular reactor, providing a 
substantial reduction of the model dimension. The optimal reduction is sought 
through sampling of chaotic orbits, which contain the maximum amount of 
information on the system dynamics. 
 
Introduction 
Chemical-looping combustion integrates power production and CO2 capture. 
Among the available technologies, packed bed reactors have recently been 
proposed [1]. These units, by holding a bed of oxygen carrier, may operate both for 
the oxidation and the reduction phase, with the advantage – with respect to 
fluidized beds – of avoiding the need for separation between carrier particles and 
gas stream. On the other hand, discontinuous operation is necessary to alternate 
solid oxidation and reduction. One possibility is the dynamical operation of the 
packed bed unit. The complex dynamics that may emerge requires accurate and 
fast modeling prior to design and implementation. Periodically forced systems are 
amenable to bifurcation analysis by means of specifically developed techniques [2] 
but models may become unmanageable in terms of state space dimension. In this 
view, empirical spectral methods based on POD [3] are expected to provide a 
substantial size reduction. 
 
Mathematical model 
The present study concerns the model of a pseudo-homogenous autothermal 
reactor, with axial dispersion of mass and heat and external cooling (Figure 1).  

 
Figure 1. Pseudo homogeneous tubular reactor with recycle. 
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The pseudo-homogeneous model is suitable to describe fixed bed reactors for 
which intra-particle resistances to heat and mass transfer are small [4]. External 
heat recovery is the simplest way to implement a feedback mechanism which 
impacts the dynamics. The present model is taken from Ref. [5], where the authors 
analyze the dynamics of the system and demonstrate the occurrence of complex 
oscillatory regimes – including periodic, multiperiodic and chaotic oscillations, 
under the influence of parameters such as the coolant temperature, the Lewis 
number, and the Péclet numbers characterizing mass and heat dispersion. The 
partial differential equations (PDEs) expressing dimensionless mass and energy 
balances for the system are: 
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where α  is a conversion degree and θ  is a dimensionless temperature.  The 
corresponding initial and boundary conditions are given, respectively, by: 
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where f  represents the efficiency of the effluent-feed heat exchange. In the present 
work, the effect of the variation of temperature of the cooling medium Hθ  onto the 
system dynamics is studied. Table 1 reports the values chosen for the parameters. 

Table 1. Model parameters. 

Da  β  δ f  PeM  PeT  Le n  
0.15 1.4 2 0.3 300 300 1 1 

 
The PDEs model is first reduced to a set of ordinary differential equations (ODEs) 
by approximating it with a cascade of N continuous stirred tank reactors (CSTRs). 
The CSTR cascade is then employed to build a reference solution, and to generate 
the data needed for the determination of the POD basis. 
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Proper orthogonal decomposition 
The POD technique delivers an optimal, in L2 sense, set of empirical orthogonal 
functions, based on the spatiotemporal set of data obtained from the numerical 
solution of a full order model (FOM) [6], which in this case is built by means of the 
CSTR cascade approximation. The set of data, where t denotes time and x denotes 
position in space, is extracted (sampled) from the numerical solution and 
represented in matrix form as: 
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where N is the number of discretisation points in spatial domain and M is the 
number of samples taken in time. The POD basis { }1 2, , , Nϕ ϕ ϕΦ = K  is then 
determined by solving the eigenvalue problem C λΦ = Φ , where C is the 
autocorrelation matrix, i.e. , TC U U=< >  with angular brackets denoting time-
averaging operation. The ordering of the computed eigenvalues from the largest to 
the smallest induces an ordering of the corresponding eigenvectors, i.e. the POD 
basis functions, from the most to the least important. Using the determined POD 
functions, the truncated solution can be expressed as a linear combination of modes 
and time dependent coefficients as: 
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where K<<N is the truncation order, i.e. the number of modes employed, whereas 
( )na t  are modal coefficients determined by integration of the system of ODEs 

obtained by performing the Galerkin projection of the original PDEs – with the 
solution ( ),u x t  replaced by its truncation ( ),u x t%  – onto the POD modes [7]:  
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with ( ),⋅ ⋅  denoting inner product and L  being a non-linear, parameter dependent 
operator involving spatial derivatives. 
 
Results 
Simulations were conducted in the range of [ ]0.07, 0.02Hθ ∈ − − , by employing the 
full order model with 150N =  tanks in the CSTR cascade, which resulted into a 
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total of 300 ODEs (150 for each state variable). Figure 2 presents a solution 
diagram, with bifurcation parameter Hθ , reporting the dimensionless temperature 
at the outlet of the reactor ( )1exθ . For 0.0735 0.0605Hθ− < < − , as also found in 
Ref. [5], the trajectories have chaotic nature, and become periodic with increasing 
temperature of the cooling medium. Figure 2 reports also the corresponding values 
of the orbit entropy, classically defined in the context of information theory as [8]: 
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The reliability of a POD basis depends on the ensemble of observations. 
Oscillatory – and particularly chaotic – regimes are expected to better span the 
realm of possible model solutions. The idea is then to generate samples for POD 
basis construction from the chaotic solution. In fact, the amount of ‘information’ 
included in the chaotic orbit is maximum. 
 

 
Figure 2. Effect of Hθ  on outlet temperature ( )1exθ  and information entropy S. 

where ip  is the probability that the maximum value of the orbit falls into the thi  
interval, and N  is the (conveniently high) number of intervals. It can be seen that 
the entropy of the orbit – which is a non-smooth function of the bifurcation 
parameter Hθ  –  increases gradually with increasing value of the orbits’ periodicity 
and reaches its maximum values for values of Hθ  for which the chaotic character 
of the solution is observed.  
 
With the purpose of determining a POD basis able to capture the global dynamics 
of the system, the solution trajectories were sampled at 0.065Hθ = − , in the chaos 



 
XXXIV Meeting of the Italian Section of the Combustion Institute 

5 

window. A set of POD basis functions were determined (called here ‘POD-A’ 
basis), employing 250 equally spaced samples collected in the transient and at 
steady state. The reduced models are able to reconstruct the chaotic attractor and, 
also, to robustly reconstruct the system behaviour for values of Hθ  far from the 
chaotic window, i.e. far from the sampled condition.  
 
Figure 3 shows a comparison of time series (a) and attractor (b) of a periodic 
solution for 0.04Hθ = − , obtained by means of the full order model (FOM) and its 
projection onto 24 POD modes – for each state variable – obtained from the chaotic 
orbit (POD-A/24). The solution obtained by the POD-based model, which has a 
dimension (48) much smaller than the FOM (300), gives a good approximation of 
the solution even from a quantitative point of view. For comparison, the results of a 
standard orthogonal collocation method with 8x3=24 nodes per state variable 
(same dimension as POD-A/24) are also reported: results are no better than 
POD-A/24. 
 

 
Figure 3. Comparison of  the time series in early transient for 0.04Hθ = − : FOM 
vs POD-A/24 (POD basis determined at 0.065Hθ = − ) and COL-8-3 (orthogonal 

collocation on 3 elements with 8 nodes) (a); corresponding limit cycles (b).  
 
Conclusions 
Model reduction via empirical spectral methods such as POD/Galerkin proves 
effective with a pseudo-homogeneous tubular reactor model, suitable to represent 
oxidation and reduction phases of a chemical looping combustion process based on 
dynamical operation of packed bed reactors. Chaos sampling is a successful way of 
optimizing the model reduction process, and provides robust reduced order models 
that can be employed for values of the operating parameters far from the sampled 
conditions. 
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