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Abstract 
In this investigation, we adopt a data-driven approach utilizing Direct Numerical 
Simulation (DNS) data from thermodiffusively unstable NH3/H2-Air mixtures to 
define progress variables, thereby addressing flame dimensionality concerns. 
Irreducible error analysis highlights the necessity of incorporating at least three 
progress variables for a comprehensive depiction of hydrogen-enriched ammonia 
flames. While two-dimensional models suffice for accurately representing 
temperature, three-dimensional models are essential for effectively reproducing NO 
dynamics. Additionally, our investigation of Artificial Neural Network (ANN) 
models reveals their ability to faithfully replicate DNS data when trained on a subset 
of that data. However, their performance markedly declines when exclusively trained 
on a dataset comprising unstretched 1D freely propagating flames. This suggests the 
critical importance of expanding datasets, particularly by incorporating stretched 
flames, to bolster the ANN model's capacity. 
 
Introduction 
Ammonia (NH3) is a promising energy carrier due to its high volumetric 
concentration of hydrogen (H2), making it efficient for energy storage and 
transportation. Its clean-burning nature with zero-carbon emissions has garnered 
attention as a potential solution to environmental concerns linked with fossil fuels 
[1]. However, challenges exist for its direct utilization as a fuel, notably its low 
reactivity and the production of nitrogen oxides (NOx) during combustion, 
particularly in stationary gas turbines. Strategies like blending with hydrogen or 
partial cracking aim to enhance reactivity [2], while adopting lean premixed 
combustion can minimize pollutant emissions. 
The efficacy of these strategies depends on factors such as fuel mixture composition 
and combustion conditions. For instance, the effective Lewis number   of 
NH3/H2 blends is critical, influencing flame stability and combustion 
characteristics, particularly in lean mixtures where   falls below a critical 
threshold  [3]. Under such conditions, intrinsic flame instabilities (IFI) may 
occur, affecting various flame features, heat release rates, morphology, propagation, 
and pollutant formation [4]. These instabilities are governed by two mechanisms: the 
destabilizing hydrodynamic (Darrieus-Landau, DL) mechanism and the 
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stabilizing/destabilizing thermal-diffusive (TD) mechanism, driven by local 
imbalances between thermal conductivity and molecular diffusivity of the 
controlling reactant [5]. Addressing the flame dimensionality issue is crucial for 
understanding and modeling these complex combustion processes. One method 
involves using tabulated chemistry, assuming all relevant chemical properties lie on 
a low-dimensional manifold (LDM) described by a limited number of transported 
scalars . It has been shown that at least two-dimensional LDM 
is needed to accurately reproduce the non linearities and the fluctuations generated 
form the IFIs in pure hydrogen premixed flames [6], and many investigations have 
been carried out that proposed different parametrization. Lapenna et al. [7] proposed 
a representation in terms of non-
deficient reactant  using a simplified irreversible one-step chemistry formulation, 
while Regele et al. [8] proposed a LDM based on the  normalized water vapor mass 
fraction and a mixture fraction . 
In this study, we employ a data-driven methodology using Direct Numerical 
Simulation (DNS) data from thermodiffusively unstable NH3/H2-Air mixtures. Our 
goal is to identify relevant "data-driven" Progress Variables by applying Singular 
Value Decomposition (SVD) to matrices containing chemical species data from 
DNS or 1D datasets generated using Cantera [9]. Through SVD, we derive Progress 
Variables that capture correlations within the chemical composition space. These 
variables are used to reproduce target observables from a DNS dataset, with 
differences analyzed among various reproduction methodologies. Specifically, 
Progress Variable definitions extracted via SVD from the training dataset are applied 
to the testing DNS dataset. Our results show that a model directly trained on DNS 
data outperforms one trained on a 1D dataset in replicating the DNS dataset. 
Additionally, through irreducible error analysis, we demonstrate that a minimum of 
three Progress Variables are needed for a comprehensive description of a hydrogen-
enriched ammonia flame and for accurately reconstructing its structural 
characteristics. 
 
Data and Methods 
To evaluate the Low-Dimensional Manifold (LDM) dimension for 
ammonia/hydrogen mixtures, we utilize two distinct datasets. Firstly, we employ the 

planar premixed flames consisting of 50% NH3 and 50% H2 by volume in air, 
operating at an equivalence ratio of . These two-dimensional flames are 
simulated within rectangular computational domains that exhibit periodicity in the 
transverse direction. A small subset of the DNS is used for training while the whole 
DNS dataset serves as the final target.  Secondly, we utilize a dataset generated via 
Cantera, comprising 30 unstretched freely propagating one-dimensional flame 
solutions. These solutions were obtained by spanning the equivalence ratios values 
in the range  in order to capture the local variations of equivalence 
ratio experienced by an unstable 2D flame due to the presence of the instabilities. 
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Following the methodology outlined in Najafi et al. (2012) [11], singular value 
decomposition (SVD) is employed to systematically identify a subset of progress 
variables that effectively capture the Direct Numerical Simulation (DNS) data while 
minimizing variance. The DNS data, represented as species mass fractions, is 
structured into a data matrix denoted as , upon which SVD is performed, resulting 
in the decomposition . Progress variables are subsequently derived from 
the unitary matrix . Up to four progress variables are denoted as , 
where  is the weight of species  in progress variable . 
Following the determination of Progress Variables, the concept of the optimal 
estimator, as elucidated in Trisjono et al. (2015) [12], is applied utilizing the two 
quantities of interest (QoI) being the temperature T and the NO mass fraction Y_NO. 
This estimator may adopt diverse forms, such as the conditional average of the QoI 
concerning the set of progress variables . For this investigation, aligned with 
Berger et al. (2018) [6], an artificial neural network (ANN) is trained utilizing 10,000 
randomly chosen samples from a DNS field or a 1D flames dataset. The ANN 
architecture comprises three hidden layers housing 5 neurons each, utilizing sigmoid 
as activation functions, while the output layer employs a linear activation function. 
These architectural parameters were judiciously selected to ensure the convergence 
of results. In particular, the sampling procedure was aided by means of the Kullback-
Liebler divergence, employed to evaluate the difference between the dataset and the 

reasonable sample dimension that was a good compromise between ease of training 
and retained information. The resultant ANN serves as a surrogate for the optimal 
estimator of the QoIs, denoted as  , where  denotes the total count of progress 
variables employed to represent the QoI.  
Subsequently, the irreducible error associated with the optimal estimator is 
computed by contrasting it with the DNS field, yielding: 
 

                               (1) 
 

The irreducible error is standardized by the maximum value of the conditionally 
averaged  with respect to the primary scalar , expressed as: 
 

                                           (2) 

 
Results and discussion 
The analysis of the Irreducible Error for each QoI shows decreasing values as the 
model dimensionality increases, allowing the assessment of the number of needed 
Progress Variables to achieve a desired accuracy in the reconstruction. For the QoI 
Temperature, the Irreducible Error significantly decreases while passing from mono-
dimensional models to two-dimensional models, but stops significantly decreasing 
if models with three or more variables are used. This indicates that two dimensional 
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models are more than sufficient to achieve an excellent representation of 
Temperature. For the variable NO the Irreducible Error analysis suggests that at least 
three variables are required to obtain good reconstruction results as shown in Tab1. 
 
Table 1. Average Irreducible Error normalized by maximum QoI value, according 
to dimensionality of the model. 

 1D 2D 3D 4D 

Temperature 0.0526 0.0080 0.0078     0.0042 

Y_NO 0.1259     0.0397     0.0149 0.0141 

 
The Artificial Neural Network (ANN) model was initially trained on the DNS dataset 
to effectively reproduce the specified Quantities of Interest (QoIs). The outcomes, 
depicted in Fig.1, demonstrate remarkable fidelity, particularly when employing two 
or more Progress Variables for temperature, and three or more for NO. Subsequently, 
the same model trained on the 1D dataset was applied to the DNS testing dataset. As 
illustrated in Fig.2, while the model exhibits comparable results for temperature, it 
consistently falls short in accurately reproducing NO. Notably, augmenting the 
dimensionality does not seem to enhance the model's capacity for NO reproduction. 
This observation prompts the inference that an expanded 1D dataset, incorporating 
stretched flames, is indispensable for attaining improved results, particularly 
concerning NO reproduction. 
 
Conclusion 
In conclusion, our study utilized a data-driven model combining SVD-derived 
Progress Variables and ANN interpolation. Trained on both DNS and 1D datasets, 
the model aimed to replicate NO mass fraction and temperature from a reference 
DNS dataset. Irreducible Error analysis revealed that at least two Progress Variables 
were necessary for temperature modeling, and three for NO. 
Temperature dynamics were accurately replicated by models trained on both DNS 
and 1D datasets with at least two Progress Variables. However, superior NO 
reproduction was achieved only by models directly trained on DNS data, requiring 
three Progress Variables. Conversely, models trained solely on 1D data showed 
suboptimal performance in capturing NO behavior. 
While the model trained on freely propagating flames proficiently reproduced 
temperature dynamics, it struggled to accurately characterize NO behavior in 
unstable flames. Future studies should explore incorporating stretched 1D flames to 
enhance NO reproduction capability. Overall, our findings contribute to advancing 
flame modeling understanding, emphasizing the importance of addressing 
complexities highlighted by Irreducible Error analysis. 
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Figure 1. Apriori scatters of presented QoIs. Each plot presents x-axis as the 
scaled DNS reference dataset values, and the y axis as the values retrieved by the 

model trained onto the DNS dataset. Above is NO data for 2D and 3D models, 
while below is Temperature data for 1D and 2D models. 

 

 
Figure2. Apriori scatters of presented QoIs. Each plot presents x-axis as the 

scaled DNS reference dataset values, and the y axis as the values retrieved by the 
model trained onto the 1D dataset. Above is NO data for 1D, 2D and 3D models, 

while below is Temperature data for 1D and 2D models. 
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