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Abstract 
We perform experiments on an acoustically-forced laminar premixed conical flame 
and assimilate experimental flame position data into a physics-based premixed flame 
model. The experimental rig is a ducted conical flame supplied by a mixture of 
methane and ethylene. A high-speed camera captures the dynamics of the perturbed 
flame, as well as snapshots of the stable flame. We model the flame with a front-
tracking solver with an imposed velocity field. We use adjoint-accelerated Bayesian 
inference to identify the most probable model parameters, given the data. Through 
this, we create a quantitatively-accurate model with quantified uncertainty bounds. 
The trained model grants access to unmeasured quantities, such as the fluctuating 
heat release rate, which cannot be reliably deduced solely from flame emission. This 
study presents a novel method that combines flame natural emissions with reduced-
order models to derive the flame transfer function with uncertainty bounds. 
 
1. Introduction 
The efficiency of the mechanism driving thermoacoustic oscillations depends 
strongly on the phase difference between the heat release rate (h.r.r) and pressure 
oscillations [1]. Because the phase difference is sensitive to small changes in most 
parts of a thermoacoustic system, its thermoacoustic behaviour tends to be extremely 
sensitive to small changes [2]. For the same reason, the outputs of faithful 
thermoacoustic models are also sensitive to small changes in the model parameters 
or the models themselves. On the positive side, this means that model parameters 
tend to be observable from data. In other words, with well chosen experiments, we 
can (i) tune the parameters of candidate models and (ii) compare candidate models 
against each other and select the best one [3, 4]. This extreme sensitivity also means 
that thermoacoustic systems can often be stabilized by making small changes, which 
is attractive in industrial settings. The h.r.r. rate is difficult to model or simulate a 
priori [5] so people often turn to experimental measurements. Unfortunately, the 
fluctuating emission from the flame is not a reliable method for measuring the 
fluctuating h.r.r. [6]. Alternatives, such as PLIF to identify reaction zones [7] are 
possibly more accurate but are technically difficult and, in large systems, 
impractical. The approach in this paper solves this problem by combining 
experimental measurements with numerical simulations. The natural emission of the 
flame may not directly give the h.r.r. but it does provide data about the flame position 
as a function of time. This data can be combined with candidate physics-based 
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models of the flame. We infer the model parameters and their uncertainties from the 
data. This model gives, amongst other things, the h.r.r. fluctuations as a function of 
the velocity fluctuations. This flame model will then be included within a larger 
model of the thermoacoustic behaviour of the system, whose other parameters are 
inferred in the same way [8]. The end result will be a quantitatively-accurate physics-
based model of the flame and thermoacoustic systems that is interpretable, 
trustworthy, and extrapolatable.  
 

 
Figure 1. Diagram of the experimental rig. 

 
2. Experiments 
The experimental configuration is a laminar premixed conical flame inserted into a 
vertical duct, as illustrated in Figure 1. The lower end of the duct is fixed to a plenum 
chamber, through which co-flow air is supplied. The upper end is open to 
atmosphere. The duct is a 0.8 m long section of quartz tube with an internal diameter 
of 75 mm. The burner is a 0.85 m long section of brass tubing with an internal 
diameter of 14 mm. At the injection plane, the nozzle diameter is 9.35 mm. The 
burner is fuelled by a mixture of methane and ethylene over a wide range of 
equivalence ratios and fuel mass flow rates. The premixed air and fuel are supplied 
to the base of the burner via a set of mass flow controllers. A high-speed camera is 
used to record the flame under both steady and perturbed conditions. The position of 
the flame-front in the image, is used as the experimental data for data assimilation. The 
properties of the flame studied in this work are summarised in Table 1. The flame is 
forced at 230 Hz, which was chosen to be close to the  
 

Table 1. Summary of the properties of the flame studied in this paper. 
 

Property Value Units 
Air flow 8.444 [Ln/min] 
CH4 flow 0.449 [Ln/min] 
C2H4 flow 0.499 [Ln/min] 
Equivalence ratio 1.27 [-] 
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Mean flow velocity 2.45 [m/s] 
Mean heat release rate 525 [W] 

 
3. Reduced-Order Model of a laminar premixed Bunsen flame 
The flame is approximated by an axisymmetric surface separating the reactants from 
the products. Each point of the surface is in kinematic equilibrium between the local 
flame speed and the reactants velocity field. In this study, we adopt a front-tracking 
method as detailed in Ref [9]. The model can then be expressed compactly through: 
 
    dx/dt = f(t,x;p)      (1) 
 
where x = (r, z) is the state vector defining the flame front position in terms of radial 
coordinates, r, and longitudinal coordinates, z. The vector p contains the physics-
based parameters, while f is the physics-based nonlinear operator encapsulating the 
flame-front dynamics. The main feature of the model is that it has been designed to 
be differentiable with respect to the state and the parameters. The model parameters 
p are: (i) the flame aspect ratio , which depends on the bulk velocity 
in the burner tube , and the unstretched laminar flame speed ; (ii) the 
nondimensional Markstein length , which depends on the thermal expansion 

the thermal conductivity of the mixture [10]; (iii) the shape parameter , which 
linearly combines a uniform and a parabolic mean velocity profile [11]; (iv) the 
wavelength of the harmonic perturbation velocity field ; (v) the amplitude of the 
acoustic forcing  ; (vi) the amplitude of the flame base oscillations ; (vii) the 
initial phase of the flame base oscillations . These seven parameters are sufficient 
to describe the flame front dynamics qualitatively. All lengths, including the 
Markstein length, are normalised by the nozzle radius. 
 
4. Bayesian data assimilation 
In this section, we introduce the following notation: the data  is the flame position 
observed in the experiment ; the model  encodes the reduced-order model 
described in the previous section such that for a given set of parameters , the model 

 gives a prediction of the flame position . 
We assume that the model can describe the data and we infer its most probable 
parameters  . We propose a prior probability distribution over the parameter 
values, through which we can encode any prior knowledge. We then use the data,  
to perform a Bayesian update on the parameter values: 
 

        (2) 
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Figure 2. (a) Prior (blue) and posterior (red) probability distributions of the
parameters in the steady case. The contours show 1, 2, and 3 standard deviations 
from the prior and posterior parameter estimations. The parameters are the flame 

aspect ratio , the shape parameter for the velocity field and the nondimensional 
Markstein length . (b) Model prediction (red line) with a confidence interval of 3 

standard deviations (red shading) plotted on top of the steady flame image. The 
panel on the right shows a magnification of the flame tip.

The best estimate of the parameters is that which maximises the left hand side of 
equation (3). We ignore the denominator because it does not depend on the 
parameters and we therefore maximise the numerator.
It is convenient to define the cost function, , as the negative log of the numerator. 
We then minimise using a quasi-Newton BFGS method with gradient information 
provided by adjoint methods. Once we have found the most likely parameters , 

[3] to determine their uncertainties. We assume that 
is Gaussian around and approximate the inverse covariance matrix 

as the Hessian of the cost function.

5. Parameter inference from flame snapshots
The data assimilation process is performed in two steps. From the steady-state flame 
snapshot we can infer the values of the aspect ratio , the nondimensional Markstein 
length and velocity shape parameter . We start by setting a large uncertainty in 
the prior values of the parameters. Figure 2a shows the prior and posterior probability 
distribution of the model parameters. The contours show 1, 2 and 3 standard 
deviations from the prior (blue) and posterior (red). In general, the 
uncertainties in the parameters have been reduced significantly by the data 
assimilation to quite precise values. Figure 2b shows the model prediction 
standard deviations plotted against the experimental flame-front picture. The largest 
uncertainties are found at the flame tip, which is the region that is most sensitive to 
the parameters. 
We repeat the process with the images of the acoustically forced flame-front. In this 
case we use the knowledge gained from the previous step and set large uncertainty 
in the prior values of , , and . Figure 3 shows the model prediction 
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standard deviations, plotted against the experimental flame-fronts, during a limit 
cycle. As in the steady-state case, the largest uncertainties are found at the flame tip. 
The discrepancies between the flame-front observations and model predictions are 
due to model error. This could be reduced by adding more physical phenomena to 
the model and applying the same data-assimilation process, although this risks 
creating an elaborate model with too many parameters to be useful. The advantage 
of the current model is that, even though it contains some model error, it can match 
the experimental images well at nearly all moments in the cycle. This model, because 
it contains few parameters, can be trained on a relatively small amount of data. 

Figure 3. Model prediction (red line) with a confidence interval of 3 standard 
deviations (red shading) plotted on top of 10 frames of the unsteady flame, 

captured during a limit cycle.

6. Heat release rate
Once the most probable parameter values are inferred and the flame-front position 
predictions are obtained, we can estimate the heat release rate. We express the heat 
release rate, , as the sum of a steady part, , and a perturbation, . Figure 4 shows
the unsteady heat release rate, , normalised by the mean heat release rate, , plotted 
over one period. The times at which the snapshots occur are indicated with dots, 
labelled with the corresponding frame numbers from Figure 3. We see that the 
trained model allows us to reconstruct a smooth heat release rate signal from sparse 
observations. We are also able to quantify the uncertainty in the fluctuating heat 
release rate. Figure 4 also shows the normalised velocity perturbation at the burner 
rim , which gives rise to the heat release rate fluctuations. We are therefore 
able to use the trained model to quantify the thermoacoustic response of the flame. 
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For example, by linearising the model around this point, we can calculate the flame 
transfer function of this flame, with defined uncertainty bounds.

Figure 4. On the left y-axis, we show the normalised heat release rate 
perturbation, , predicted by the model during one period, , of the limit-cycle 
(blue line). The numbers on the blue line refer to the frame numbers in Figure 3. 

The contours show 1, 2, and 3 standard deviations from the maximum a posteriori 
model prediction. On the right y-axis we show the normalised longitudinal velocity 

perturbation at the burner rim, 

7. Conclusions
In this study, we perform experiments on an acoustically forced, laminar premixed 
conical flame in a duct. We use a high-speed camera to record snapshots of the 
natural emission of the flame while steady and forced. We propose a physics-based 
reduced-order model of this flame and infer the most probable model parameters 
from the data. This process (i) turns a qualitatively-accurate model into a 
quantitatively-accurate model, and (ii) quantifies the uncertainty in the inferred 
model parameters and the model predictions. The inference process produces a 
digital-twin of the flame, which provides access to quantities that were not directly 
measured in the experiments. From observations of the perturbed flame we can infer 
the fluctuating heat release rate as a response to the velocity perturbation. This is

the flame transfer 
function. We have demonstrated this using snapshots of the natural luminosity of the 
flame, which can be captured using a basic experimental setup. We can therefore 
estimate 
heat release rate measurements. In future work we will (i) apply this method to a 
wide range of conical flames, (ii) propose general models for the parameters so that 
we can predict the behaviour of unseen flames, and (iii) apply the inferred flame 
transfer functions to a higher level model of the thermoacoustic system.
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