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Abstract 
 
The onset of possible undesired events such as pre-ignition and end-gas autoignition 
that may or may not lead to knock in a spark ignition hydrogen ICE is investigated 
through a 3D CFD analysis implementing gas phase reactions. The chemical kinetic 
mechanism by Keromnes-2013 has been chosen for this objective based on its 
performance against different other mechanisms available in the literature providing 
the least discrepancy for ignition delay times against Shock-Tube and Rapid-
Compression-Machine experiments. A typical commercial vehicle engine with an 
internal single displacement of about 2l equipped for a Direct Injection SI-H2 engine 
has been used, for which experimental test bench data are available to be compared 
against the numerically reproduced engine cycle. The spatial and temporal 
distribution of the reactive intermediate species, temperature, pressure, and 
equivalence ratio have been thoroughly investigated in a commercial CFD code AVL 
Fire Classic. Regions of mass and thermal inhomogeneities particularly around the 
spark plug, valves and the injector were monitored for which the charge mixture 
could possibly evolve into an abnormal combustion depending on the local 
thermodynamic state being close the explosion limit of the H2-air mixture at that 
localized equivalence ratio. The results of the current fundamental but essential 
analysis could become an objective function for H2-ICEs to design optimal charge-
motion and cooling techniques minimizing mass and thermal inhomogeneities 
respectively of a H2-air mixture inside the combustion chamber to ensure a safe 
engine operation. 
 
Introduction 
The goals set by the EU green deal [1] to achieve zero-carbon emissions have led the 
automotive sector towards focused research on Hydrogen Internal Combustion 
Engines (HICEs) among many other hybrid and electric propulsion alternatives. 
Hydrogen, with its intrinsic characteristic to be burnt lean due to its wide 
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flammability range, and just with water as the main emission, if the considered 
mixture is pure H2-O2, is a viable and attractive solution to achieve the zero-carbon 
emissions target. While trying to maintain the balance between performance and 
selection of geometry for a HICE [2]
design parameters has mainly been limited by the occurrence of pre-ignition [3 5]. 
In Direct Injection (DI) engines, such as the one of the present study, pre-ignitions 
could be caused by thermal and mass inhomogeneities around the injected hydrogen 
jet. The mass inhomogeneity allows different fuel-air equivalence ratios around the 
injection where a richer mass fraction of the mixture may pre-ignite the charge. 
Thermal inhomogeneities promote temperature gradients within the mixture around 
hot-spots such as high temperature exhaust deposits and spark plug tips. The 
formation of hot-spots, such as soot particles and deposits on spark plugs, is caused 
by the pyrolysis of lubricating oil [6 8]. One of the major reasons of pre-ignition in 
HICEs is through contamination of the pure H2-air charge with lubricating oil. This 
contamination alters the mixture composition and therefore its chemical state 
promoting a much earlier ignition. The presence of lubricating oil in the primary 
charge and its role in pre-ignition phenomenon has been recently investigated by 
Distaso et al. for the case of hydrogen [9,10]. 
Considering SI engines, engine knock or detonation can be caused by the interaction 
between the propagating flame front and the detonation wave [11,12] generated at a 
hot-spot within the end-gas. To understand the possibility of such an event, it is 
crucial to know the chemical and thermodynamic state of the end-gas which may or 
may not ignite due to that hot-spot. In essence, pre-ignition of hydrogen fueled 
engines can be explained by the hydrogen-oxygen chain reaction [13]. 
The onset of a self-ignition event can be explained through the assessment of 
explosion limits of the H2-air mixture. The explosion limit of a fuel-oxidant mixture 
is the locus of pressure and temperature values that distinguish between an explosive 
and non-explosive reaction of the said mixture composition. This limit, in practice, 
is an isometric line with a constant value of ignition delay time and has been first 
reported experimentally by B. Lewis and G. von Elbe [14] for H2-O2 mixture at 
stochiometric conditions acquired in a constant-volume spherical chamber. 
Whether the occurring abnormal combustion event is either pre or post ignition, both 
scenarios cause peak pressures beyond a safe limit that damage the engine 
components. These limits are typically recognized through engine test bench 
experiments by performing a Design of Experiments (DOEs) with variable 
parameters like intake pressure, temperature, and mixture composition. These 
exhaustive experiments, however, can be reduced by having at hand a numerical and 
systematic method for analyzing and consequently preventing adverse combustion 
effects like pre-ignition or end-gas autoignition. The use of numerical chemical 
kinetics allows for such possibility to evaluate in-cylinder thermodynamic states that 
could promote an undesired combustion during engine operation. To expand this 
numerical study in 3D, the current CFD study, implementing gas-phase reactions, is 
performed.  
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Methodology and simulation setup 
To assess the possible transition of any local thermodynamic state towards an 
abnormal combustion event either before the initiation of the spark (pre-ignition) or 
after the spark has been initiated (i.e., post-spark-ignition e.g., end-gas auto-ignition) 
inside the combustion chamber, it needs to be compared with the explosion limit of 
the charge mixture. This requires having the in-cylinder spatial and temporal 
distribution of pressure ,  and mixture composition (equivalence 
ratio ) through a 3D CFD analysis. The explosion limit for H2-air mixture can be 
acquired numerically through a 0D homogenous batch-reactor simulations for a 
range of , , and  values. Such simulations have been performed on Ansys 
CHEMKIN Pro software utilizing the Kéromnès mechanism [15] to acquire 
explosion limits having isometric ignition delay times of 1ms. At current engine 
speed i.e., 1300 rpm, one stroke is completed in about 23 ms, so selecting 1ms as 
threshold is most appropriate for engine applications. 
For the numerical analysis a typical commercial vehicle engine with an internal 
single displacement of about 2l has been used. CFD mesh details and numerical setup 
are reported in Table 1.  Valve close injection and combustion events, and their 
corresponding Crank Angle Degrees (CADs) are listed in Table 2. A full engine 
cycle has been simulated in a commercial CFD code AVL Fire Classic implementing 
boundary and initial conditions at each stage acquired from the test bench 
experimental data for the operating point in question. The thermodynamic states of 
pressure, temperature for relevant intake conditions and injection parameters are 
reported in Table 3. 
 

Table 1 Mesh parameters & numerical setup 
Mesh cell shape Hexagonal 

Solver unsteady RANS 
Turbulence model k- -f 

 
 

Table 2 Valve, injection and spark timings.  
End of compression stroke Simulation start point 0o (Top Dead Center) 

Start of Injection SOI 597o 
End of Injection EOI 650o 

Spark timing ST 704.9o 
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Table 3 Thermodynamic states at intake valve opening and injection parameters.  
Pressure at IVO  2.918 bar 

Temperature at IVO  45.4oC 
Equivalence ratio at EOI  2.4 
Injection pressure at SOI  23.678 bar 

 
Results 
After the validation of the numerical pressure trace with experimental, cross-
sectional plots for ,  and  were created to analyze the spatial distribution of each 
parameter. 
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Figure 1 represents two different time instants inside the cylinder, namely, 650 
CAD (EOI) and 715 CAD (~13CAD after the ST) to compare any local 
thermodynamic state that could reach or even surpass the explosion limit. Within the 
figure the spatial distributions of , , and  (
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Figure 1(a)(b)(c)) are shown. Knowing these three variables allows one to plot the 
same on a p-T plot (
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Figure 1(d)) and compare the state against the explosion limit. A few in-cylinder 
points, chosen for each time instant (mentioned on each plot), are considered for 
comparison on the p-T plot. 
It is observed that for 650 CAD (EOI), none of the four thermodynamic points 
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reaches conditions close to the explosion limit even at the higher end of . 
Despite the high equivalence ratio close to the injector, both the localized pressure 
and temperature are not enough to bring the thermodynamic state close to the 
explosion limit. The cooling effect can also be observed because of hydrogen jet 
expansion upstream the injector. 
For the second case (715 CAD), point 2 gets in the vicinity of the explosion limit at 

 but not close to that of  to which it corresponds. Even though point 2 
is away from evolving into an abnormal combustion event, it clearly shows its higher 
thermodynamic state as the compression wave generated by the moving flame front 
compresses the local mass of charge close to the walls [16]. A higher rate of 
combustion or higher intake conditions at IVO could possibly induce such an 
undesired combustion.  
 
Conclusions 

The present CFD study paves the way towards development of an integrated 
database for H2 combustion, which would be an invaluable resource for designing 
H2 engines in a safe manner, avoiding undesired pre- and post-spark self-ignition 
during engine operation. This fundamental study evaluates the thermodynamic states 
both spatially and instantaneously while monitoring their vicinity to the explosion 
limit. Further studies in the future will entail understanding an accumulation of heat 
release within the gas-phase reactions as well as imposing hot-spots at expected 
surfaces like valves and spark plug that could, in general, emulate an engine 
operating under real conditions. 
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Figure 1. In-cylinder spatial distribution of (a) Temperature (b) Pressure (c) 
equivalence ratio, and (d) 1ms isometric explosion limits for varying phi values. 
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