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Abstract

The integration of the chemical system always presents considerable challenges due
to the wide variety of time scales embedded within. Stiff integrators, necessary for
the stability properties they offer, allow the system to evolve over significant time
steps. However, backward integration generally becomes computationally expensive
as the size of the chemical kinetics mechanism increases. Since a nonlinear ODE can
always be recast as a Lie group action, we can constrain the integration onto the
manifold with a Group Preserving Scheme (GPS). This property allows for the
definition of high-order, explicit, unconditionally stable time integration schemes
that are also Jacobian free. The performance of the GPS, compared in terms of
computational time and accuracy with the canonical integrator CVODE, reveals a
tenfold speed-up while preserving the same accuracy for large mechanisms.

Introduction

The field of computational chemistry frequently encounters the challenge of solving
ordinary differential equations (ODEs) that arise in the modeling of chemical
kinetics. These equations often exhibit stiff behavior due to the vastly different
reaction time scales present within the system. Traditional numerical methods based
on backward time integration, while broadly effective, can sometimes fail to
maintain the inherent geometric properties of the underlying physical processes,
leading to potential inaccuracies and inefficiencies.

Another approach to deal with stiffness is to adaptively filter the fast time scales
according to the Computational Singular Perturbation (CSP) principles. This
approach, encapsulated by the CSP solver [1], leverages a local low-dimensional
manifold derived from the CSP fast/slow decomposition. It adaptively mitigates
stiffness by selectively eliminating rapid scales from the vector of chemical source
terms, leading to a simplified set of non-stiff equations. These equations can be
integrated with explicit schemes using larger time-steps. However, the CSP solver
depends on generating a costly on-the-fly basis known as the CSP projector, derived
from the eigensystem of the Jacobian matrix associated with the local chemical
source terms.

A second strategy introduces a data-based reduced-order model (ROM) designed to
mitigate the stiffness derived from various chemical time scales [2]. The goal is to
create a ROM that serves as a fluid surrogate for tracking the time evolution of the
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thermochemical state vector (comprising temperature and species mass fractions)
throughout a complex, stiff, and nonlinear ignition sequence. The approach utilizes
an encode-forecast-decode strategy, incorporating a nonlinear autoencoder (AE) for
reducing dimensionality (through encoding and decoding) combined with a neural
ordinary differential equation (NODE) to model the system dynamics within the
latent space provided by the AE.

The main issue of employing these techniques is that they are computationally
expensive when the size of the mechanism becomes large and Lie group integrators
present a promising solution to these challenges. For over a hundred years, Lie
groups have been crucial in shaping our understanding of the geometry inherent in
differential equations. It is widely thought that the concept of Lie groups, as part of
the broader framework of differential geometry, is extremely useful in developing
advanced numerical methods for discretizing ODEs while preserving their invariant
properties. By maintaining the geometric structure and invariance of the original
ODEs, these new methods are more precise, more stable, and more efficient than
traditional numerical approaches [3].

This approach is particularly advantageous in the context of chemical kinetics, where
the preservation of certain invariants—Iike total mass or energy—can be crucial for
achieving physically realistic and stable simulations.

In this paper, we explore the application of Lie group integrators to the domain of
chemistry, focusing on their potential to enhance the accuracy and stability of
simulations compared to conventional numerical methods.

Numerical Methods
This section summarizes the numerical approach adopted to formulate the time
integration schemes.
The chemistry evolution is described through a stiff ODE

d
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Where y represents the state vector of the Ngspecies mass fractions and the RHS
f(y) the chemical source term modeled by the Arrhenius law. From a mathematical
perspective, the y(t) is a curve in RN parametrized by the time t that goes from the
initial condition to the equilibrium point. Recalling a fundamental theorem of
differential geometry, since the curve is uniquely determined, we can define an at/as
and finite number of maps to represent the curve, the y is a manifold. Additionally,
the tangent to y(t) is given by f(y), which is always defined. Since the tangent bundle
is defined everywhere, the manifold is differentiable.
The main goal of this manuscript is to formulate a numerical scheme that constrains
the integration to the manifold itself following Liu’s idea of Group Preserving
Scheme [3-4]. This is possible if and only if the tangent bundle can be expressed as
a left Lie group action on the manifold, which means that there exists an operator H
such that
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And this operator must be differentiable, invertible and the inverse must be
differentiable as well. To define a suitable operator H, consider the augmented
system x = [y ||y||]]". The time evolution of x is then
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The operator H is a Special Orthogonal Lie group (SO(Ns)), then we can integrate
on manifold. The milestone of the integration on manifold is that we can define a
linear operator linear A (Lie algebra) such that

(niu),m = A(nin)n

And is function of the Lie group. The Lie theorem guarantees that for each Lie group
there exists a Lie algebra. A canonical way to define A is by the exponential
mapping, i.e. we consider the direct resolution of Eq. then
A = exp (HAY)
Although the exponential mapping is generally the best way of proceeding, it does
not perform well when f tends to 0, i.e. in the neighborhood of the initial condition
and equilibrium point, with a subsequent stiffer integration. For this reason, the
Cayley transform is more suitable to describe the corresponding Lie algebra
A, = Cay(AtH,)
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Taking only the first line of the RHS of Eq. we obtain a first order Group Preserving
Scheme

4||yn||2 + ZAtfn *Yn

4|lynl|*-ae2| 1|
Note that if f, =0, n, =1 then the scheme can handle equilibrium points.
However, to have a proper integration scheme 1,, > 0, then it is necessary to impose
another condition on the time step. In particular,
|IF =] < Lllynl|

Where L is the Lipschitz constant defined as the maximum absolute value of the
eigenvalues of the Jacobian of the system. Since we want to build a Jacobian-free
scheme, we will impose L arbitrarily large and function of the time step as

Atfn = Yn +nfn

Yn+1 = Yn
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Where Atgopq; is the prescribed time step of the simulation. To guarantee stability
we need to integrate with smaller substeps defined as
1— e_LAtglobal

L
This ensures that the integration scheme is unconditionally stable.

Atjpcqr =

Furthermore, to better reconstruct the trajectory, we want to use higher order
integration schemes. Following the Butcher tableau to determine the weights of the
4™ order Runge-Kutta scheme, we can write
Alynll* +2(4t/2)f 5 - y
ki = f(yn) nf = ez (At/2)
ey iliyal 30t 251
Ynlll1Y2 t n Yn
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To have a 4™ order group preserving scheme.
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Results

This section shows the performances of the Lie Group Preserving Scheme. To assess
the performances of the integrator, we consider a constant volume and energy reactor
of a n-dodecane oxygen mixture at the pressure of 10 bar and we compare the
performances against the stiff integrator CVODE.

Figure 1 shows the execution time of a time step (.. ) in function of the physical
time of the simulation. The Group Preserving Scheme is 10~12 times faster than
CVODE before achieving the equilibrium solution, while the evaluation at the
equilibrium point is about 100 times faster.

Figure 2 shows a comparison of the temperature and key species profiles to analyze
the accuracy of the proposed solver. In particular, the Lie integrator has been tested
with three different time steps (10, 10® and 1077) and the reference profiles are
computed with Cantera. The Group Preserving Scheme accurately reconstructs the
Cantera solution for any species independently from the choice of the time step. The
only small discrepancy is observed for At = 1077s for HO, implying that the scheme
is robust.
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Figure I Execution time for the evaluation of each time step of a batch reactor.
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Figure 2 Comparison of the batch reactor with the Lie integrator with different time steps and the
Cantera solution.

Conclusion

A Group Preserving Scheme based on the Lie group theory has been presented and
its performances in terms of accuracy and speed are compared against the canonical
solvers CVODE and Cantera. The new integrator achieves a speedup of 10 times
during the actual evolution of the system and 100 times for the evaluation of the
equilibrium point preserving the same accuracy as Cantera. The robustness of a
manifold-constrained time integration scheme has been proved and this opens to a
possible coupling with a full CFD solver.
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